47 research outputs found

    A role for AID in chromosome translocations between c-myc and the IgH variable region

    Get PDF
    Chromosome translocations between oncogenes and the region spanning the immunoglobulin (Ig) heavy chain (IgH) variable (V), diversity (D), and joining (J) gene segments (Ig V-JH region) are found in several mature B cell lymphomas in humans and mice. The breakpoints are frequently adjacent to the recombination signal sequences targeted by recombination activating genes 1 and 2 during antigen receptor assembly in pre–B cells, suggesting that these translocations might be the result of aberrant V(D)J recombination. However, in mature B cells undergoing activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM), duplications or deletions that would necessitate a double-strand break make up 6% of all the Ig V-JH region–associated somatic mutations. Furthermore, DNA breaks can be detected at this locus in B cells undergoing SHM. To determine whether SHM might induce c-myc to Ig V-JH translocations, we searched for such events in both interleukin (IL) 6 transgenic (IL-6 tg) and AID−/− IL-6 tg mice. Here, we report that AID is required for c-myc to Ig V-JH translocations induced by IL-6

    HIV therapy by a combination of broadly neutralizing antibodies in humanized mice

    Get PDF
    Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals

    Enhanced HIV-1 immunotherapy by commonly arising antibodies that target virus escape variants

    Get PDF
    Antibody-mediated immunotherapy is effective in humanized mice when combinations of broadly neutralizing antibodies (bNAbs) are used that target nonoverlapping sites on the human immunodeficiency virus type 1 (HIV-1) envelope. In contrast, single bNAbs can control simian–human immunodeficiency virus (SHIV) infection in immune-competent macaques, suggesting that the host immune response might also contribute to the control of viremia. Here, we investigate how the autologous antibody response in intact hosts can contribute to the success of immunotherapy. We find that frequently arising antibodies that normally fail to control HIV-1 infection can synergize with passively administered bNAbs by preventing the emergence of bNAb viral escape variants

    Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling

    Get PDF
    Background: The human pathogen Listeria monocytogenes resides and proliferates within the cytoplasm of epithelial cells. While the virulence factors essentially contributing to this step of the infection cycle are well characterized, the set of listerial genes contributing to intracellular replication remains to be defined on a genome-wide level. Results: A comprehensive library of L. monocytogenes strain EGD knockout mutants was constructed upon insertion-duplication mutagenesis, and 1491 mutants were tested for their phenotypes in rich medium and in a Caco-2 cell culture assay. Following sequencing of the plasmid insertion site, 141 different genes required for invasion of and replication in Caco-2 cells were identified. Ten in-frame deletion mutants were constructed that confirmed the data. The genes with known functions are mainly involved in cellular processes including transport, in the intermediary metabolism of sugars, nucleotides and lipids, and in information pathways such as regulatory functions. No function could be ascribed to 18 genes, and a counterpart of eight genes is missing in the apathogenic species L. innocua. Mice infection studies revealed the in vivo requirement of IspE (Lmo0190) involved in mevalonate synthesis, and of the novel ABC transporter Lmo0135-0137 associated with cysteine transport. Based on the data of this genome-scale screening, an extreme pathway and elementary mode analysis was applied that demonstrates the critical role of glycerol and purine metabolism, of fucose utilization, and of the synthesis of glutathione, aspartate semialdehyde, serine and branched chain amino acids during intracellular replication of L. monocytogenes. Conclusion: The combination of a genetic screening and a modelling approach revealed that a series of transporters help L. monocytogenes to overcome a putative lack of nutrients within cells, and that a high metabolic flexibility contributes to the intracellular replication of this pathogen

    HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice

    Get PDF
    Effective control of HIV-1 infection in humans is achieved using combinations of antiretroviral therapy (ART) drugs. In humanized mice (hu-mice), control of viremia can be achieved using either ART or by immunotherapy using combinations of broadly neutralizing antibodies (bNAbs). Here we show that treatment of HIV-1–infected hu-mice with a combination of three highly potent bNAbs not only resulted in complete viremic control but also led to a reduction in cell-associated HIV-1 DNA. Moreover, lowering the initial viral load by coadministration of ART and immunotherapy enabled prolonged viremic control by a single bNAb after ART was withdrawn. Similarly, a single injection of adeno-associated virus directing expression of one bNAb produced durable viremic control after ART was terminated. We conclude that immunotherapy reduces plasma viral load and cell-associated HIV-1 DNA and that decreasing the initial viral load enables single bNAbs to control viremia in hu-mice

    Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Get PDF
    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme

    A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates

    Get PDF
    Zika virus (ZIKV) causes severe neurologic complications and fetal aberrations. Vaccine development is hindered by potential safety concerns due to antibody cross-reactivity with dengue virus and the possibility of disease enhancement. In contrast, passive administration of anti-ZIKV antibodies engineered to prevent enhancement may be safe and effective. Here, we report on human monoclonal antibody Z021, a potent neutralizer that recognizes an epitope on the lateral ridge of the envelope domain III (EDIII) of ZIKV and is protective against ZIKV in mice. When administered to macaques undergoing a high-dose ZIKV challenge, a single anti-EDIII antibody selected for resistant variants. Co-administration of two antibodies, Z004 and Z021, which target distinct sites on EDIII, was associated with a delay and a 3- to 4-log decrease in peak viremia. Moreover, the combination of these antibodies engineered to avoid enhancement prevented viral escape due to mutation in macaques, a natural host for ZIKV

    Wet Deposition of Polychlorinated Biphenyls in Urban and Background Areas of the Mid-Atlantic States.

    No full text
    Abstract not availableJRC.H-Institute for environment and sustainability (Ispra

    Atmospheric Concentrations and Deposition of Polycyclic Aromatic Hydrocarbons to the Mid-Atlantic East Coast Region

    No full text
    Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured at urban/industrial, suburban, coastal, and rural areas in New Jersey as part of the New Jersey Atmospheric Deposition Network. Concentrations of 36 PAH compounds were measured in the gas and particle phases in air and in precipitation at nine sites at regular intervals from October 1997 through May 2001. Gas-phase and particle-phase SUM 36PAH concentrations ranged from 0.45 to 118 ng/m3 and from 0.046 to 172 ng/m3, respectively, and precipitation concentrations ranged from 11 to 16200 ng/L. PAH concentrations vary spatially across the region, with the highest concentrations occurring at the most heavily urban and industrial locations. Average gas absorption deposition ranged from 0.004 (naphthacene) to 5040 (methylphenanthrenes) ng/m2 d, and dry particle deposition PAH fluxes ranged from 0.11 (naphthacene) to 300 (benzo[b+k]fluoranthene) ng/m2 d at the nine sites. Average atmospheric wet deposition PAH fluxes at the seven sites ranged from 0.40 (cyclopenta-[cd]pyrene) to 140 (methylphenanthrenes) ng/m2 d. These represent the first comprehensive estimates of PAH deposition to New Jersey and the Mid-Atlantic East Coast.JRC.H.5-Rural, water and ecosystem resource
    corecore