8 research outputs found

    Detailed Analysis of the Pulsations During and After Bursts from the Bursting Pulsar (GRO J1744-28)

    Get PDF
    The hard X-ray bursts observed during both major outbursts of the Bursting Pulsar (GRO J1744-28) show pulsations near the neutron star spin frequency with an enhanced amplitude relative to that of the persistent emission. Consistent with previous work, we find that the pulsations within bursts lag behind their expected arrival times based upon the persistent pulsar ephemeris. For an ensemble of 1293 bursts recorded with the Burst and Transient Source Experiment, the average burst pulse time delay is 61.0 +/- 0.8 ms in the 25 - 50 keV energy range and 72 +/- 5 ms in the 50 - 100 keV band. The residual time delay from 10 to 240 s following the start of the burst is 18.1 +/- 0.7 ms (25 - 50 keV). A significant correlation of the average burst time delay with burst peak flux is found. Our results are consistent with the model of the pulse time lags presented by Miller (1996).Comment: 11 pages, accepted for publication in Ap

    The Compatibility of Friedmann Cosmological Models with Observed Properties of Gamma-Ray Bursts and a Large Hubble Constant

    Get PDF
    The distance scale to cosmic gamma-ray bursts (GRB's) is still uncertain by many orders of magnitude; however, one viable scenario places GRB's at cosmological distances, thereby permitting them to be used as tracers of the cosmological expansion over a significant range of redshifts zeta. Also, several recent measurements of the Hubble constant H(sub 0) appearing in the referred literature report values of 70-80 km/s /Mpc. Although there is significant debate regarding these measurements, we proceed here under the assumption that they are evidence of a large value for H(sub 0). This is done in order to investigate the additional constraints on cosmological models that can be obtained under this hypothesis when combined with the age of the universe and the brightness distribution of cosmological gamma-ray bursts. We show that the range of cosmological models that can be consistent with the GRB brightness distribution, a Hubble constant of 70-80 km/s/Mpc, and a minimum age of the universe of 13-15 Gyr is constrained significantly, largely independent of a wide range of assumptions regarding the evolutionary nature of the burst population. Low-density, Lambda greater than 0 cosmological models with deceleration parameter in the range -1 less than q(sub 0) less than 0 and density parameter sigma(sub 0) in the range approximately equals 0.10-0.25(Omega(sub 0) approximately equals 0.2-0.5) are strongly favored

    Gamma-Ray Burst Precursor Activity as Observed with BATSE

    Get PDF
    Gamma-ray burst time histories often consist of multiple episodes of emission with the count rate dropping to the background level between adjacent episodes. We define precursor activity as any case in which the first episode (referred to as the precursor episode) has a lower peak intensity than that of the remaining emission (referred to as the main episode) and is separated from the remaining burst emission by a background interval that is at least as long as the remaining emission. We find that approx. 3% of the bursts observed with the Burst and Transient Source Experiment (BATSE) on Compton Gamma Ray Observatory (CGRO) satisfy this definition. We present the results of a study of the properties of these events. The spatial distribution of these sources is consistent with that of the larger set of all BATSE gamma-ray bursts: inhomogeneous and isotropic. A correlation between the duration of the precursor emission and the duration of the main episode emission is observed at about the 3 sigma confidence level. We find no meaningful significant correlations between or among any of the other characteristics of the precursor or main episode emission. It appears that the characteristics of the main episode emission are independent of the existence of the precursor emission

    The Third BATSE Gamma-Ray Burst Catalog

    Get PDF
    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1122 cosmic gamma-ray bursts between 1991 April 19 and 1994 September 19. These events constitute the Third BATSE (3B) burst catalog. This catalog includes the events previously reported in the 2B catalog, which covered the time interval 1991 April 19 to 1993 March 9. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance. The angular distribution is consistent with isotropy. The mean galactic dipole and quadrupole moments are within 0.6 a and 0.3 a, respectively, of the values expected for isotropy. The intensity distribution is not consistent with a homogeneous distribution of burst sources, with V/V(sub max) = 0.33 +/- 0.01. The duration distribution (T(sub 90)) exhibits bimodality, with peaks at approx. 0.5 and approx. 30 s. There is no compelling evidence for burst repetition, but only weak limits can be placed on the repetition rate
    corecore