1,015 research outputs found

    Quantum Field Theory Constrains Traversable Wormhole Geometries

    Get PDF
    Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived for a minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form of an uncertainty principle-type constraint on the magnitude and duration of the negative energy density seen by a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound should hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the bound to the stress-energy of static traversable wormhole spacetimes. Our analysis implies that either the wormhole must be only a little larger than Planck size or that there is a large discrepancy in the length scales which characterize the wormhole. In the latter case, the negative energy must typically be concentrated in a thin band many orders of magnitude smaller than the throat size. These results would seem to make the existence of macroscopic traversable wormholes very improbable.Comment: 26 pages, plain LaTe

    Spatially Averaged Quantum Inequalities Do Not Exist in Four-Dimensional Spacetime

    Get PDF
    We construct a particular class of quantum states for a massless, minimally coupled free scalar field which are of the form of a superposition of the vacuum and multi-mode two-particle states. These states can exhibit local negative energy densities. Furthermore, they can produce an arbitrarily large amount of negative energy in a given region of space at a fixed time. This class of states thus provides an explicit counterexample to the existence of a spatially averaged quantum inequality in four-dimensional spacetime.Comment: 13 pages, 1 figure, minor corrections and added comment

    The Quantum Interest Conjecture

    Get PDF
    Although quantum field theory allows local negative energy densities and fluxes, it also places severe restrictions upon the magnitude and extent of the negative energy. The restrictions take the form of quantum inequalities. These inequalities imply that a pulse of negative energy must not only be followed by a compensating pulse of positive energy, but that the temporal separation between the pulses is inversely proportional to their amplitude. In an earlier paper we conjectured that there is a further constraint upon a negative and positive energy delta-function pulse pair. This conjecture (the quantum interest conjecture) states that a positive energy pulse must overcompensate the negative energy pulse by an amount which is a monotonically increasing function of the pulse separation. In the present paper we prove the conjecture for massless quantized scalar fields in two and four-dimensional flat spacetime, and show that it is implied by the quantum inequalities.Comment: 17 pages, Latex, 3 figures, uses eps

    Structure of cellulose microfibrils in primary cell-walls from collenchyma

    Get PDF
    In the primary walls of growing plant cells, the glucose polymer cellulose is assembled into long microfibrils a few nanometers in diameter. The rigidity and orientation of these microfibrils control cell expansion; therefore, cellulose synthesis is a key factor in the growth and morphogenesis of plants. Celery (Apium graveolens) collenchyma is a useful model system for the study of primary wall microfibril structure because its microfibrils are oriented with unusual uniformity, facilitating spectroscopic and diffraction experiments. Using a combination of x-ray and neutron scattering methods with vibrational and nuclear magnetic resonance spectroscopy, we show that celery collenchyma microfibrils were 2.9 to 3.0 nm in mean diameter, with a most probable structure containing 24 chains in cross section, arranged in eight hydrogen-bonded sheets of three chains, with extensive disorder in lateral packing, conformation, and hydrogen bonding. A similar 18-chain structure, and 24-chain structures of different shape, fitted the data less well. Conformational disorder was largely restricted to the surface chains, but disorder in chain packing was not. That is, in position and orientation, the surface chains conformed to the disordered lattice constituting the core of each microfibril. There was evidence that adjacent microfibrils were noncovalently aggregated together over part of their length, suggesting that the need to disrupt these aggregates might be a constraining factor in growth and in the hydrolysis of cellulose for biofuel production

    Computational quantum chemical studies of main group and transition metal molecules and ions.

    Get PDF
    This thesis describes three computational studies the decomposition of BCl, the geometric and electronic structures of ferrocene and iron pentacarbonvl. and the electronic structure and spectra of the complexes Th(//8C8H8)2. Pa( /8C8H8)2. Th(//8Ch(CH.,).,H.,), and Pa(C8(CH,),H,)2- The prediction and rationalisation of the decomposition products of BCl has been achieved by a characterisation of the lowest energy singlet and triplet potential energy surfaces using ab initio methods. The <% diagnostic has been used to assess the degree of multiconfigurational character in the coupled-cluster wavefunctions. The suitability of this method is determined by a partial re characterisation of the system using multiconfigurational methods. The frag mentation products located are in good agreement with available experimental data provided by mass spectrometry. The structures of ferrocene and iron pentacarbonyl are calculated using a va riety of methods including coupled-cluster (CC) theory. CC from a Hartree-Fock reference produces good structures, but with 2 diagnostics that suggest single reference methods to be unreliable. CC from Kohn-Sham (KS) references return equally good structures, but with significantly reduced & values, suggesting that the f7 may not be a reliable indicator of multiconfigurational character in these systems. The single configurational nature of Fe(CO)s is confirmed by multicon- figurational calculations. Experimentally, Fc(CO)s is observed to have equatorial M-C bonds that are shorter than the axial although the predicted structures agree well with experiment, this feature cannot be reproduced. TD-DFT is used to calculate excitation spectra for thorocene, protactinoceiie and their methyl-substituted derivatives. The experimental UV-vis data for these species are extremely limited and previous theoretical studies give assignments of these data which are not consistent. The effects of the molecular structure and use of different exchange-correlation potentials on the spectrum are investigated for thorocene. Consistent excitation spectra for each species are calculated and assigned these are used to suggest new assignments of the experimental data

    Motion of Inertial Observers Through Negative Energy

    Get PDF
    Recent research has indicated that negative energy fluxes due to quantum coherence effects obey uncertainty principle-type inequalities of the form |\Delta E|\,{\Delta \tau} \lprox 1\,. Here ΔE|\Delta E| is the magnitude of the negative energy which is transmitted on a timescale Δτ\Delta \tau. Our main focus in this paper is on negative energy fluxes which are produced by the motion of observers through static negative energy regions. We find that although a quantum inequality appears to be satisfied for radially moving geodesic observers in two and four-dimensional black hole spacetimes, an observer orbiting close to a black hole will see a constant negative energy flux. In addition, we show that inertial observers moving slowly through the Casimir vacuum can achieve arbitrarily large violations of the inequality. It seems likely that, in general, these types of negative energy fluxes are not constrained by inequalities on the magnitude and duration of the flux. We construct a model of a non-gravitational stress-energy detector, which is rapidly switched on and off, and discuss the strengths and weaknesses of such a detector.Comment: 18pp + 1 figure(not included, available on request), in LATEX, TUPT-93-

    El Niño Southern Oscillation (ENSO) and annual malaria incidence in Southern Africa

    Get PDF
    We evaluated the association between annual malaria incidence and El Niño Southern Oscillation (ENSO) as measured by the Southern Oscillation Index (SOI) in five countries in Southern Africa from 1988 to 1999. Below normal incidence of malaria synchronised with a negative SOI (El Niño) and above normal incidence with a positive SOI (La Niña), which lead to dry and wet weather conditions, respectively. In most countries there was a positive relationship between SOI and annual malaria incidence, especially where Anopheles arabiensis is a major vector. This mosquito breeds in temporary rain pools and is highly sensitive to fluctuations in weather conditions. South Africa and Swaziland have the most reliable data and showed the strongest associations, but the picture there may also be compounded by the moderating effect of other oscillatory systems in the Indian Ocean. The impact of ENSO also varies over time within countries, depending on existing malaria control efforts and response capacity. There remains a need for quantitative studies that at the same time consider both ENSO-driven climate anomalies and non-ENSO factors influencing epidemic risk potential to assess their relative importance in order to provide an empirical basis for malaria epidemic forecasting model

    Cavernous transformation of the portal vein a rare phenomenon

    Get PDF
    Cavernous transformation of the portal vein is a complication of a prior portal vein thrombosis and carries a very poor prognosis. It is associated with portal hypertension, and the massive ascites that develops as a result, mimics other clinical conditions that may puzzle physicians. Elevated levels of Ca-125 is often seen in patients with associated underlying chronic liver disease, which in turn may lead to a wild goose chase for ovarian carcinoma. Portal vein thrombosis in HIV-positive patients, most likely as a result of HIV-associated thrombosis, must be considered in all HIV patients who present with features of portal hypertension and ascites.http://www.ajol.info/index.php/sagrhttp://reference.sabinet.co.za/sa_epublication/medgasam2023Internal Medicin

    About the stability of the dodecatoplet

    Full text link
    A new investigation is done of the possibility of binding the "dodecatoplet", a system of six top quarks and six top antiquarks, using the Yukawa potential mediated by Higgs exchange. A simple variational method gives a upper bound close to that recently estimated in a mean-field calculation. It is supplemented by a lower bound provided by identities among the Hamiltonians describing the system and its subsystems.Comment: 5 pages, two figures merged, refs. added, typos correcte

    Effects of Vacuum Fluctuation Suppression on Atomic Decay Rates

    Full text link
    The use of atomic decay rates as a probe of sub-vacuum phenomena will be studied. Because electromagnetic vacuum fluctuations are essential for radiative decay of excited atomic states, decay rates can serve as a measure of the suppression of vacuum fluctuation in non-classical states, such as squeezed vacuum states. In such states the renormalized expectation value of the square of the electric field or the energy density can be periodically negative, representing suppression of vacuum fluctuations. We explore the extent to which atomic decays can be used to measure the mean squared electric field or energy density. We consider a scheme in which atoms in an excited state transit a closed cavity whose lowest mode contains photons in a non-classical state. The change in the decay probability of the atom in the cavity due to the non-classical state can, under certain circumstances, serve as a measure of the mean squared electric field or energy density in the cavity. We derive a quantum inequality bound on the decrease in this probability. We also show that the decrease in decay rate can sometimes be a measure of negative energy density or negative squared electric field. We make some estimates of the magnitude of this effect, which indicate that an experimental test might be possible.Comment: 19 pages, 3 figure
    corecore