1,450 research outputs found

    Visual suppression of the vestibulo-ocular reflex during space flight

    Get PDF
    Visual suppression of the vestibulo-ocular reflex was studied in 16 subjects on 4 Space Shuttle missions. Eye movements were recorded by electro-oculography while subjects fixated a head mounted target during active sinusoidal head oscillation at 0.3 Hz. Adequacy of suppression was evaluated by the number of nystagmus beats, the mean amplitude of each beat, and the cumulative amplitude of nystagmus during two head oscillation cycles. Vestibulo-ocular reflex suppression was unaffected by space flight. Subjects with space motion sickness during flight had significantly more nystagmus beats than unaffected individuals. These susceptible subjects also tended to have more nystagmus beats before flight

    Eye and head motion during head turns in spaceflight

    Get PDF
    Eye-head motion was studied pre-, in- and postflight during single voluntary head turns. A transient increase in vestibulo-ocular reflex (VOR) gain occurred early in the flight, but later trended toward normal. This increased gain was produced by a relative increase in eye counterrotation velocity. Asymmetries in gain with right and left turns also occurred, caused by asymmetries in eye counterrotation velocities. These findings were remarkably similar to those from Soviet primate studies using gaze fixation targets, except the human study trended more rapidly toward normal. These findings differ substantially from those measuring VOR gain by head oscillation, in which no significant changes were found inflight. No visual disturbances were noted in either test condition or in normal activities. These head turn studies are the only ones to date documenting any functional change in VOR in weightlessness

    Studies of the vestibulo-ocular reflex on STS 4, 5 and 6

    Get PDF
    The vestibulo-ocular reflex (VOR) may be altered by weightlessness. Since this reflex plays a large role in visual stabilization, it was important to document any changes caused by space flight. This is a report on findings on STS-4 through 6 and is part of a larger study of neurosensory adaptation done on STS-4 through 8. Voluntary horizontal head oscillations at 1/3 Hz with amplitude of 30 deg right and left of center were recorded by a potentiometer and compared to eye position recorded by electroculography under the following conditions: eyes open, head fixed, tracking horizontal targets switched 0, 15, and 30 degrees right and left (optokinetic reflex - OKR - and calibration); eyes open and fixed on static external target with oscillation, (vestibulo ocular reflex, eyes closed - VOR EC); eyes open and wearing opaque goggles with target fixed in imagination (vestibulo-ocular reflex, eyes shaded - VOR ES); and eyes open and fixed on a head synchronized target with head oscillation (VOR suppression). No significant changes were found in voluntary head oscillation frequency or amplitude in those with (n=5), and without (n=3), space motion sickness (SMS), with phase of flight or test condition. Variations in head oscillation were too small to have produced detectable changes in test results

    Studies of the horizontal vestibulo-ocular reflex on STS 7 and 8

    Get PDF
    Unpaced voluntary horizontal head oscillation was used to study the Vestibulo-Ocular Reflex (VOR) on Shuttle flights STS 7 and 8. Ten subjects performed head oscillations at 0.33 Hz + or - 30 deg amplitude under the followng conditions: VVOR (visual VOR), eyes open and fixed on a stationary target; VOR-EC, with eyes closed and fixed on the same target in imagination; and VOR-S (VOR suppression), with eyes open and fixed on a head-synchronized target. Effects of weightlessness, flight phase, and Space Motion Sickness (SMS) on head oscillation characteristics were examined. A significant increase in head oscillation frequency was noted inflight in subjects free from SMS. In subjects susceptible to SMS, frequency was reduced during their Symptomatic period. The data also suggest that the amplitude and peak velocity of head oscillation were reduced early inflight. No significant changes were noted in reflex gain or phase in any of the test conditions; however, there was a suggestion of an increase in VVOR and VOR-ES gain early inflight in asymptomatic subjects. A significant difference in VOR-S was found between SMS susceptible and non-susceptible subjects. There is no evidence that any changes in VOR characteristics contributed to SMS

    Saccadic eye movement during spaceflight

    Get PDF
    Saccadic eye movements were studied in six subjects during two Space Shuttle missions. Reaction time, peak velocity and accuracy of horizontal, visually-guided saccades were examined preflight, inflight and postflight. Conventional electro-oculography was used to record eye position, with the subjects responding to pseudo-randomly illuminated targets at 0 deg and + or - 10 deg and 20 deg visual angles. In all subjects, preflight measurements were within normal limits. Reaction time was significantly increased inflight, while peak velocity was significantly decreased. A tendency toward a greater proportion of hypometric saccades inflight was also noted. Possible explanations for these changes and possible correlations with space motion sickness are discussed

    Book Reviews

    Get PDF

    The Market for Borrowing Corporate Bonds

    Get PDF
    This paper describes the market for borrowing corporate bonds using a comprehensive data set from a major lender. The cost of borrowing corporate bonds is comparable to the cost of borrowing stock, between 10 and 20 basis points, and both have fallen over time. Factors that influence borrowing costs are loan size, percentage of inventory lent, rating, and borrower identity. There is no evidence that bond short sellers have private information. Bonds with Credit Default Swaps (CDS) contracts are more actively lent than those without. Finally, the 2007 Credit Crunch does not affect average borrowing costs or loan volume, but does increase borrowing cost variance

    Quantitative Magnetization Transfer in In Vivo Healthy Human Skeletal Muscle at 3 T

    Get PDF
    The value of quantitative MR methods as potential biomarkers in neuromuscular disease is being increasingly recognized. Previous studies of the magnetization transfer ratio have demonstrated sensitivity to muscle disease. The aim of this work was to investigate quantitative magnetization transfer imaging of skeletal muscle in healthy subjects at 3 T to evaluate its potential use in pathological muscle. The lower limb of 10 subjects was imaged using a 3D fast low-angle shot acquisition with variable magnetization transfer saturation pulse frequencies and amplitudes. The data were analyzed with an established quantitative two-pool model of magnetization transfer. T1 and B1 amplitude of excitation radiofrequency field maps were acquired and used as inputs to the quantitative magnetization transfer model, allowing properties of the free and restricted proton pools in muscle to be evaluated in seven different muscles in a region of interest analysis. The average restricted pool T2 relaxation time was found to be 5.9 ± 0.2μs in the soleus muscle and the restricted proton pool fraction was 8 ± 1%. Quantitative magnetization transfer imaging of muscle offers potential new biomarkers in muscle disease within a clinically feasible scan time. Magn Reson Med, 2010. © 2010 Wiley-Liss, Inc

    Interaction Effects in a One-Dimensional Constriction

    Full text link
    We have investigated the transport properties of one-dimensional (1D) constrictions defined by split-gates in high quality GaAs/AlGaAs heterostructures. In addition to the usual quantized conductance plateaus, the equilibrium conductance shows a structure close to 0.7(2e2/h)0.7(2e^2/h), and in consolidating our previous work [K.~J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996)] this 0.7 structure has been investigated in a wide range of samples as a function of temperature, carrier density, in-plane magnetic field BB_{\parallel} and source-drain voltage VsdV_{sd}. We show that the 0.7 structure is not due to transmission or resonance effects, nor does it arise from the asymmetry of the heterojunction in the growth direction. All the 1D subbands show Zeeman splitting at high BB_{\parallel}, and in the wide channel limit the gg-factor is g0.4\mid g \mid \approx 0.4, close to that of bulk GaAs. As the channel is progressively narrowed we measure an exchange-enhanced gg-factor. The measurements establish that the 0.7 structure is related to spin, and that electron-electron interactions become important for the last few conducting 1D subbands.Comment: 8 pages, 7 figures (accepted in Phys. Rev. B
    corecore