40 research outputs found

    Method for Hydraulically Separating Carbon and Classifying Coal Combustion Ash

    Get PDF
    A method for selective separation of particles from a particle-containing material includes preparing a slurry of the particle-containing material and a dispersant, passing the slurry through a hydraulic classifier in a first direction, establishing a particle flow in a direction that is different from the first direction, and recovering particles having a mean particle size of about 2-7 μm. The flow of particles defines a cross-current flow relative to the slurry feed direction. The method further includes providing the classifier with an interior divider assembly defining at least one inclined channel. The divider assembly typically includes a plurality of substantially parallel dividers separating the classifier into multiple channels having a substantially equal internal volume. A hydraulic classifier for separating particles having a mean particle size of from about 2-7 μm in accordance with the present method is provided also

    Technology and Methodology for the Production of High Quality Polymer Filler and Super-Pozzolan from Fly Ash

    Get PDF
    A novel method for producing fly ash material with a range of particle sizes from about 2.0 to about 4.0 μm is provided utilizing superplasticizers. The method produces fly ash material suitable for use as filler material in the plastics industry and super pozzolan for the concrete industry

    Method for Improving the Pozzolanic Character of Fly Ash

    Get PDF
    A method for improving the pozzolanic character of fly ash includes the steps of first hydraulically classifying and then flotation separating the fly ash in order to reduce particle size distribution and remove carbon. The method also includes the steps of spiral concentrating separated coarse particles to recover iron, pyrite and marcasite and screening the fly ash to remove ultra-light carbon and plant debris

    Cementitious Compositions

    Get PDF
    The invention provides a cementitious composition comprising a cement component comprising (i) an accelerant, (ii) a calcium sulphate source and (iii) an ettringite forming cement; an aggregate; and optionally water; wherein the cement has a minimum unconfined compressive strength of 1500 psi when tested in accordance with ASTM C1140 and/or C1604 at 15 minutes after placement; methods for its use and concrete formed from it

    Interfacial Bond between Reinforcing Fibers and Calcium Sulfoaluminate Cements: Fiber Pullout Characteristics

    Get PDF
    The results of an experimental investigation on the influence of the interfacial bond of reinforcing fibers embedded in a calcium sulfoaluminate matrix on the fiber-pullout peak load and energy consumption are presented. Bonding at the fiber-matrix interface plays an important role in controlling the mechanical performance of cementitious composites—in particular, composites formed from sulfate-based systems (calcium sulfoaluminate [CSA] cements), as opposed to the silicate systems found in portland cement. Various types of fibers were selected, including polyvinyl alcohol (PVA), polypropylene, and copper-coated steel. The fibers were embedded in three different matrixes: two sulfate-based cements including one commercially available CSA cement and a CSA fabricated from coal-combustion by-products. The third matrix was a silicatebased ordinary portland cement (OPC). In this study, the results of the single-fiber pullout test were coupled with scanning electron microscopy (SEM) to examine the interfacial bond between the fiber and CSA matrix for evidence of debonding and possible hydration reaction products

    Low-Silica and High-Calcium Stone in the Newman Limestone (Mississippian) on Pine Mountain, Harlan County, Southeastern Kentucky

    Get PDF
    The coal industry of Kentucky is an important market for limestone. Coal producers use limestone as rock dust for explosion abatement in underground coal mines and as a neutralizing agent in surface-mine reclamation and acid-drainage control. Crushed stone is also used for constructing and maintaining haulage roads. In the Eastern Kentucky Coal Field, the coal-bearing rocks of Pennsylvanian age generally do not contain limestones that are thick enough to quarry or mine economically. But movement on the Pine Mountain overthrust fault has brought the Newman Limestone (Mississippian) to the surface along Pine Mountain in the southeastern part of the coal field. The Newman on Pine Mountain in Harlan County was sampled at 1-foot intervals to determine its chemical quality and potential for industrial use, particular as low-silica rock dust. The sampled section contains two zones of low-silica stone, 64 and 25 feet thick, averaging 0.82 and 1.01 percent silica (SiO2), respectively. Intervals of high-calcium limestone are present in the low-silica zones. These deposits are potentially suitable for use as rock dust in underground coal mines and as neutralizing agents in surface-mine reclamation and acid-drainage control. The intervals of chemically pure stone in Harlan County may be sufficiently thick to produce by selective quarrying or underground mining. Exploitation of the Newman deposits, however, will be complicated by the steep southeastward to southward dip (13 to 42°) of the beds, displacement along small faults within the limestone, and fracturing

    Low-Silica and High-Calcium Stone in the Newman Limestone (Mississippian) on Pine Mountain, Letcher County, Southeastern Kentucky

    Get PDF
    The coal industry of Kentucky is an important market for limestone. Coal producers use limestone as rock dust for explosion abatement in underground coal mines and as a neutralizing agent in surface-mine reclamation and acid-drainage control. Haulage-road construction and maintenance require crushed stone. Coal-bearing rocks of Pennsylvanian age in the Eastern Kentucky Coal Field generally do not contain limestones that are sufficiently thick to quarry or mine economically, but in the southeastern part of the coal field, fault movement has brought the Newman Limestone to the surface along Pine Mountain. The Newman was sampled at three sites in Letcher County to determine its chemical quality and potential for industrial use, particularly as a source of low-silica rock dust. Analysis of the foot-by-foot samples shows that the Newman contains several zones of low-silica stone, 10 to 39 feet thick. A few intervals of high-calcium limestone, 12 to 24 feet thick, coincide with or occur in the low-silica zones. The deposits of low-silica and high-calcium stone are thickest in the southwestern part of Letcher County and commonly thin northeastward. The thicker deposits of chemically pure limestone and dolomite may be an economically exploitable source of rock dust for underground coal mines, and a source of stone for surface-mine reclamation and acid-drainage control. Production from deposits in the Newman, however, will be complicated by the steep southeastward to southward dip (20 to 42°) of the beds, possible displacement along small faults, and fracturing of the limestone

    Alite calcium sulfoaluminate cement: chemistry and thermodynamics

    Get PDF
    Calcium sulfoaluminate (CA)cementisabinderofincreasinginteresttothecementindustryandisundergoingrapiddevelopment.Currentformulationsdonotcontainalite;however,alitecalciumsulfoaluminate(aCA) cement is a binder of increasing interest to the cement industry and is undergoing rapid development. Current formulations do not contain alite; however, alite calcium sulfoaluminate (a-CA) cements can combine the favourable characteristics of Portland cement (PC) with those of CAcementwhilealsohavingalowercarbondioxidefootprintthanthecurrentgenerationofPCclinkers.ThispaperpresentstworesultsontheformationofaCA cement while also having a lower carbon dioxide footprint than the current generation of PC clinkers. This paper presents two results on the formation of a-CA clinkers. The first is a thermodynamic study demonstrating that the production of a-CAclinkerispossiblewithouttheuseofmineralisers,dopingwithforeignelements,orusingmultiplestagesofheating.ItisestablishedthataCA clinker is possible without the use of mineralisers, doping with foreign elements, or using multiple stages of heating. It is established that a-CA clinker can be readily produced in a standard process by controlling the oxygen and sulfur dioxide fugacity in the atmosphere. This allows for the stabilisation of ye’elimite to the higher temperatures required for alite stability. The second result establishes that when using fluorine to mineralise a-C$A clinker production, the iron content in the clinker is also an important variable. Although the exact mechanism of alite stabilisation is not known, it is shown that alite formation increases with the combination of calcium fluoride and iron (III) oxide in the mix

    2-Acetyl­pyridinium bromanilate

    Get PDF
    In the crystal of the title mol­ecular salt (systematic name: 2-acetyl­pyridinium 2,5-dibromo-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), C7H8NO+·C6HBr2O4 −, centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O—H⋯O and N—H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing
    corecore