8,387 research outputs found

    germ cell-less Is Required Only during the Establishment of the Germ Cell Lineage of Drosophila and Has Activities Which Are Dependent and Independent of Its Localization to the Nuclear Envelope

    Get PDF
    AbstractThe germ cell precursors of Drosophila (pole cells) are specified by maternally supplied germ plasm localized to the posterior pole of the egg. One component of the germ plasm, germ cell-less (gcl) mRNA, encodes a novel protein which specifically localizes to the nuclear envelope of the pole cell nuclei. In addition to its maternal expression, gcl is zygotically expressed through embryonic development. In this report, we have characterized a null allele of germ cell-less to determine its absolute requirement during development. We have found that gcl activity is required only for the establishment of the germ cell lineage. Most embryos lacking maternal gcl activity fail to establish a germline. No other developmental defects were detected. Examination of germline development in these mutant embryos revealed that gcl activity is required for proper pole bud formation, pole cell formation, and pole cell survival. Using this null mutant we have also assayed the activity of forms of Gcl protein with altered subcellular distribution and found that localization to the nuclear envelope is crucial for promoting pole cell formation, but not necessary to initiate and form proper pole buds. These results indicate that gcl acts in at least two different ways during the establishment of the germ cell lineage

    The Luminosity Dependence of Quasar Clustering

    Full text link
    We investigate the luminosity dependence of quasar clustering, inspired by numerical simulations of galaxy mergers that incorporate black hole growth. These simulations have motivated a new interpretation of the quasar luminosity function. In this picture, the bright end of the quasar luminosity function consists of quasars radiating nearly at their peak luminosities, while the faint end consists mainly of very similar sources, but at dimmer phases in their evolution. We combine this model with the statistics of dark matter halos that host quasar activity. We find that, since bright and faint quasars are mostly similar sources seen in different evolutionary stages, a broad range in quasar luminosities corresponds to only a narrow range in the masses of quasar host halos. On average, bright and faint quasars reside in similar host halos. Consequently, we argue that quasar clustering should depend only weakly on luminosity. This prediction is in qualitative agreement with recent measurements of the luminosity dependence of the quasar correlation function (Croom et al. 2005) and the galaxy-quasar cross-correlation function (Adelberger & Steidel 2005). Future precision clustering measurements from SDSS and 2dF, spanning a large range in luminosity, should provide a strong test of our model.Comment: 9 pages, 4 figures, submitted to Ap

    ANALYSIS OF THE AERIAL AND LANDING PHASES OF THE GRAND JETE

    Get PDF
    The purpose of this study was to quantify the ground reaction forces, moments of forces and moment powers during the landing from the ballet jump called the grand jete. In addition, the flight phase was examined to determine whether the illusion of linear motion occurred. Laws (2002) has stated that it is possible for dancers to give the illusion of "floating" or traveling linearly rather than parabolically during the flight phase of a grand jete by raising the arms and/or the legs at an appropriate speed

    Evaluation of the effectiveness and cost-effectiveness of Families for Health V2 for the treatment of childhood obesity : study protocol for a randomized controlled trial

    Get PDF
    Background: Effective programs to help children manage their weight are required. Families for Health focuses on a parenting approach, designed to help parents develop their parenting skills to support lifestyle change within the family. Families for Health V1 showed sustained reductions in overweight after 2 years in a pilot evaluation, but lacks a randomized controlled trial (RCT) evidence base. Methods/design: This is a multi-center, investigator-blind RCT, with parallel economic evaluation, with a 12-month follow-up. The trial will recruit 120 families with at least one child aged 6 to 11 years who is overweight (≥91st centile BMI) or obese (≥98th centile BMI) from three localities and assigned randomly to Families for Health V2 (60 families) or the usual care control (60 families) groups. Randomization will be stratified by locality (Coventry, Warwickshire, Wolverhampton). Families for Health V2 is a family-based intervention run in a community venue. Parents/carers and children attend parallel groups for 2.5 hours weekly for 10 weeks. The usual care arm will be the usual support provided within each NHS locality. A mixed-methods evaluation will be carried out. Child and parent participants will be assessed at home visits at baseline, 3-month (post-treatment) and 12-month follow-up. The primary outcome measure is the change in the children’s BMI z-scores at 12 months from the baseline. Secondary outcome measures include changes in the children’s waist circumference, percentage body fat, physical activity, fruit/vegetable consumption and quality of life. The parents’ BMI and mental well-being, family eating/activity, parent–child relationships and parenting style will also be assessed. Economic components will encompass the measurement and valuation of service utilization, including the costs of running Families for Health and usual care, and the EuroQol EQ-5D health outcomes. Cost-effectiveness will be expressed in terms of incremental cost per quality-adjusted life year gained. A de novo decision-analytic model will estimate the lifetime cost-effectiveness of the Families for Health program. Process evaluation will document recruitment, attendance and drop-out rates, and the fidelity of Families for Health delivery. Interviews with up to 24 parents and children from each arm will investigate perceptions and changes made. Discussion: This paper describes our protocol to assess the effectiveness and cost-effectiveness of a parenting approach for managing childhood obesity and presents challenges to implementation. Trial registration: Current Controlled Trials ISRCTN4503220

    The Evolution in the Faint-End Slope of the Quasar Luminosity Function

    Full text link
    (Abridged) Based on numerical simulations of galaxy mergers that incorporate black hole (BH) growth, we predict the faint end slope of the quasar luminosity function (QLF) and its evolution with redshift. Our simulations have yielded a new model for quasar lifetimes where the lifetime depends on both the instantaneous and peak quasar luminosities. This motivates a new interpretation of the QLF in which the bright end consists of quasars radiating at nearly their peak luminosities, but the faint end is mostly made up of quasars in less luminous phases of evolution. The faint-end QLF slope is then determined by the faint-end slope of the quasar lifetime for quasars with peak luminosities near the observed break. We determine this slope from the quasar lifetime as a function of peak luminosity, based on a large set of simulations spanning a wide variety of host galaxy, merger, BH, and ISM gas properties. Brighter peak luminosity (higher BH mass) systems undergo more violent evolution, and expel and heat gas more rapidly in the final stages of quasar evolution, resulting in a flatter faint-end slope (as these objects fall below the observed break in the QLF more rapidly). Therefore, as the QLF break luminosity moves to higher luminosities with increasing redshift, implying a larger typical quasar peak luminosity, the faint-end QLF slope flattens. From the quasar lifetime as a function of peak luminosity and this interpretation of the QLF, we predict the faint-end QLF slope and its evolution with redshift in good agreement with observations. Although BHs grow anti-hierarchically (with lower-mass BHs formed primarily at lower redshifts), the observed change in slope and differential or luminosity dependent density evolution in the QLF is completely determined by the luminosity-dependent quasar lifetime and physics of quasar feedback.Comment: 13 pages, 4 figures, submitted to ApJ (Replacement with minor revisions and changed sign convention

    Posterior Interosseous Nerve of the Elbow

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135289/1/jum2010295691.pd

    The Application and Performance of Single Nucleotide Polymorphism Markers for Population Genetic Analyses of Lepidoptera

    Get PDF
    Microsatellite markers are difficult to apply within lepidopteran studies due to the lack of locus-specific PCR amplification and the high proportion of “null” alleles, such that erroneous estimations of population genetic parameters often result. Herein single nucleotide polymorphism (SNP) markers are developed from Ostrinia nubilalis (Lepidoptera: Crambidae) using next generation expressed sequence tag (EST) data. A total of 2742 SNPs were predicted within a reference assembly of 7414 EST contigs, and a subset of 763 were incorporated into 24 multiplex PCR reactions. To validate this pipeline, 5 European and North American sample sites were genotyped at 178 SNP loci, which indicated 84 (47.2%) were in Hardy–Weinberg equilibrium. Locus-by-locus FST, analysis of molecular variance, and STRUCTURE analyses indicate significant genetic differentiation may exist between European and North American O. nubilalis. The observed genetic diversity was significantly lower among European sites, which may result from genetic drift, natural selection, a genetic bottleneck, or ascertainment bias due to North American origin of EST sequence data. SNPs are an abundant source of mutation data for molecular genetic marker development in non-model species, with shared ancestral SNPs showing application within closely related species. These markers offer advantages over microsatellite markers for genetic and genomic analyses of Lepidoptera, but the source of mutation data may affect the estimation of population parameters and likely need to be considered in the interpretation of empirical data

    On the Monadic Second-Order Transduction Hierarchy

    Full text link
    We compare classes of finite relational structures via monadic second-order transductions. More precisely, we study the preorder where we set C \subseteq K if, and only if, there exists a transduction {\tau} such that C\subseteq{\tau}(K). If we only consider classes of incidence structures we can completely describe the resulting hierarchy. It is linear of order type {\omega}+3. Each level can be characterised in terms of a suitable variant of tree-width. Canonical representatives of the various levels are: the class of all trees of height n, for each n \in N, of all paths, of all trees, and of all grids
    corecore