295 research outputs found

    Determination of Matter Surface Distribution of Neutron-rich Nuclei

    Full text link
    We demonstrate that the matter density distribution in the surface region is determined well by the use of the relatively low-intensity beams that become available at the upcoming radioactive beam facilities. Following the method used in the analyses of electron scattering, we examine how well the density distribution is determined in a model-independent way by generating pseudo data and by carefully applying statistical and systematic error analyses. We also study how the determination becomes deteriorated in the central region of the density, as the quality of data decreases. Determination of the density distributions of neutron-rich nuclei is performed by fixing parameters in the basis functions to the neighboring stable nuclei. The procedure allows that the knowledge of the density distributions of stable nuclei assists to strengthen the determination of their unstable isotopes.Comment: 41 pages, latex, 27 figure

    An insulator loop resides between the synthetically interacting elements of the human/rat conserved breast cancer susceptibility locus MCS5A/Mcs5a

    Get PDF
    Many low-penetrance breast cancer susceptibility loci are found to be located in non-protein-coding regions, suggesting their involvement in gene expression regulation. We identified the human/rat-conserved breast cancer susceptibility locus MCS5A/Mcs5a. This locus has been shown to act in a non-mammary cell-autonomous fashion through the immune system. The resistant Mcs5a allele from the Wistar–Kyoto (WKy) rat strain consists of two non-protein-coding genetic elements that must be located on the same chromosome to elicit the phenotype. In this study, we show the presence of a conserved higher order chromatin structure in MCS5A/Mcs5a located in between the synthetically interacting genetic elements. The looped elements are shown to be bound by CTCF and cohesin. We identify the downregulation of Fbxo10 expression in T cells as a strong candidate mechanism through which the interacting genetic elements of the resistant Mcs5a allele modulate mammary carcinoma susceptibility. Finally, we show that the human MCS5A polymorphisms associated with breast cancer risk are located at both sides of the looped structure and functionally interact to downregulate transcriptional activity, similar to rat Mcs5a. We propose a mechanistic model for MCS5a/Mcs5a in which a CTCF-mediated insulator loop encompassing the TOMM5/Tomm5 gene, resides in between and brings into closer physical proximity the synthetically and functionally interacting resistant genetic variants

    Population Dynamics and Angler Exploitation of the Unique Muskellunge Population in Shoepack Lake, Voyageurs National Park, Minnesota

    Get PDF
    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark–recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size

    On the importance of long-term functional assessment after stroke to improve translation from bench to bedside

    Get PDF
    Despite extensive research efforts in the field of cerebral ischemia, numerous disappointments came from the translational step. Even if experimental studies showed a large number of promising drugs, most of them failed to be efficient in clinical trials. Based on these reports, factors that play a significant role in causing outcome differences between animal experiments and clinical trials have been identified; and latest works in the field have tried to discard them in order to improve the scope of the results. Nevertheless, efforts must be maintained, especially for long-term functional evaluations. As observed in clinical practice, animals display a large degree of spontaneous recovery after stroke. The neurological impairment, assessed by basic items, typically disappears during the firsts week following stroke in rodents. On the contrary, more demanding sensorimotor and cognitive tasks underline other deficits, which are usually long-lasting. Unfortunately, studies addressing such behavioral impairments are less abundant. Because the characterization of long-term functional recovery is critical for evaluating the efficacy of potential therapeutic agents in experimental strokes, behavioral tests that proved sensitive enough to detect long-term deficits are reported here. And since the ultimate goal of any stroke therapy is the restoration of normal function, an objective appraisal of the behavioral deficits should be done

    Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice

    Get PDF
    International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    In quest of a systematic framework for unifying and defining nanoscience

    Get PDF
    This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience
    corecore