2 research outputs found

    A new material for hydrogen storage, ScAl0.8Mg0.2

    Full text link
    A novel aluminium rich alloy for hydrogen storage has been discovered, ScAl0.8Mg0.2, which has superior properties regarding hydrogen storage capacity, kinetics and stability towards air oxidation in comparison to hydrogen absorption in state-of-the-art intermetallic compounds. Detailed analysis of the hydrogen absorption in ScAl0.8Mg0.2 has been performed using in situ synchrotron radiation powder X-ray diffraction, neutron powder diffraction and quantum mechanical calculations. The results from calculations and experiments are in good agreement with each other

    Hydrogen absorption and desorption properties of a novel ScNiAl alloy

    No full text
    A new hydrogen absorbing material has been discovered, ScNiAl, which can store 1.5 wt.% hydrogen reversibly. In this compound, hydrogen absorption is a two-step process; solid solution of hydrogen at temperatures below 180A degrees C and decomposition into ScH2 and NiAl at higher temperatures. Detailed analysis of the hydrogen absorption/desorption has been performed using in situ synchrotron radiation powder X-ray diffraction and thermal desorption spectroscopy. The apparent activation energy for hydrogen desorption was determined to be 182 kJ/mol and the material is stable during cycling
    corecore