4,866 research outputs found

    Neurogenetic interactions and aberrant behavioral co-morbidity of attention deficit hyperactivity disorder (ADHD): dispelling myths

    Get PDF
    BACKGROUND: Attention Deficit Hyperactivity Disorder, commonly referred to as ADHD, is a common, complex, predominately genetic but highly treatable disorder, which in its more severe form has such a profound effect on brain function that every aspect of the life of an affected individual may be permanently compromised. Despite the broad base of scientific investigation over the past 50 years supporting this statement, there are still many misconceptions about ADHD. These include believing the disorder does not exist, that all children have symptoms of ADHD, that if it does exist it is grossly over-diagnosed and over-treated, and that the treatment is dangerous and leads to a propensity to drug addiction. Since most misconceptions contain elements of truth, where does the reality lie? RESULTS: We have reviewed the literature to evaluate some of the claims and counter-claims. The evidence suggests that ADHD is primarily a polygenic disorder involving at least 50 genes, including those encoding enzymes of neurotransmitter metabolism, neurotransmitter transporters and receptors. Because of its polygenic nature, ADHD is often accompanied by other behavioral abnormalities. It is present in adults as well as children, but in itself it does not necessarily impair function in adult life; associated disorders, however, may do so. A range of treatment options is reviewed and the mechanisms responsible for the efficacy of standard drug treatments are considered. CONCLUSION: The genes so far implicated in ADHD account for only part of the total picture. Identification of the remaining genes and characterization of their interactions is likely to establish ADHD firmly as a biological disorder and to lead to better methods of diagnosis and treatment

    Preliminary investigation of plasma levels of sex hormones and human growth factor(s), and P300 latency as correlates to cognitive decline as a function of gender

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aging is marked by declines in levels of many sex hormones and growth factors, as well as in cognitive function. The P300 event-related potential has been established as a predictor of cognitive decline. We decided to determine if this measure, as well as 2 standard tests of memory and attention, may be correlated with serum levels of sex hormones and growth factors, and if there are any generalizations that could be made based on these parameters and the aging process.</p> <p>Findings</p> <p>In this large clinically based preliminary study several sex-stratified associations between hormone levels and cognition were observed, including (1) for males aged 30 to 49, both IGF-1 and IGFBP-3 significantly associated negatively with prolonged P300 latency; (2) for males aged 30 to 49, the spearman correlation between prolonged P300 latency and low free testosterone was significant; (3) for males aged 60 to 69, there was a significant negative correlation between P300 latency and DHEA levels; (4) for females aged 50 to 59 IGFBP-3 significantly associated negatively with prolonged P300 latency; (5) for females at all age periods, estrogen and progesterone were uncorrelated with P300 latency; and (6) for females aged 40 to 69, there was significant negative correlation between DHEA levels and P300 latency. Moreover there were no statistically significant correlations between any hormone and Wechsler Memory Scale-III (WMS-111). However, in females, there was a significant positive correlation between estrogen levels and the number of Attention Deficit Disorder (ADD) complaints.</p> <p>Conclusion</p> <p>Given certain caveats including confounding factors involving psychiatric and other chronic diseases as well as medications, the results may still have important value. If these results could be confirmed in a more rigorously controlled investigation, it may have important value in the diagnosis, prevention and treatment of cognitive impairments and decline.</p

    Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): a commentary

    Get PDF
    BACKGROUND AND HYPOTHESIS. Based on neurochemical and genetic evidence, we suggest that both prevention and treatment of multiple addictions, such as dependence to alcohol, nicotine and glucose, should involve a biphasic approach. Thus, acute treatment should consist of preferential blocking of postsynaptic Nucleus Accumbens (NAc) dopamine receptors (D1-D5), whereas long term activation of the mesolimbic dopaminergic system should involve activation and/or release of Dopamine (DA) at the NAc site. Failure to do so will result in abnormal mood, behavior and potential suicide ideation. Individuals possessing a paucity of serotonergic and/or dopaminergic receptors, and an increased rate of synaptic DA catabolism due to high catabolic genotype of the COMT gene, are predisposed to self-medicating any substance or behavior that will activate DA release, including alcohol, opiates, psychostimulants, nicotine, gambling, sex, and even excessive internet gaming. Acute utilization of these substances and/or stimulatory behaviors induces a feeling of well being. Unfortunately, sustained and prolonged abuse leads to a toxic" pseudo feeling" of well being resulting in tolerance and disease or discomfort. Thus, a reduced number of DA receptors, due to carrying the DRD2 A1 allelic genotype, results in excessive craving behavior; whereas a normal or sufficient amount of DA receptors results in low craving behavior. In terms of preventing substance abuse, one goal would be to induce a proliferation of DA D2 receptors in genetically prone individuals. While in vivo experiments using a typical D2 receptor agonist induce down regulation, experiments in vitro have shown that constant stimulation of the DA receptor system via a known D2 agonist results in significant proliferation of D2 receptors in spite of genetic antecedents. In essence, D2 receptor stimulation signals negative feedback mechanisms in the mesolimbic system to induce mRNA expression causing proliferation of D2 receptors. PROPOSAL AND CONCLUSION. The authors propose that D2 receptor stimulation can be accomplished via the use of Synapatmine™, a natural but therapeutic nutraceutical formulation that potentially induces DA release, causing the same induction of D2-directed mRNA and thus proliferation of D2 receptors in the human. This proliferation of D2 receptors in turn will induce the attenuation of craving behavior. In fact as mentioned earlier, this model has been proven in research showing DNA-directed compensatory overexpression (a form of gene therapy) of the DRD2 receptors, resulting in a significant reduction in alcohol craving behavior in alcohol preferring rodents. Utilizing natural dopaminergic repletion therapy to promote long term dopaminergic activation will ultimately lead to a common, safe and effective modality to treat Reward Deficiency Syndrome (RDS) behaviors including Substance Use Disorders (SUD), Attention Deficit Hyperactivity Disorder (ADHD), Obesity and other reward deficient aberrant behaviors. This concept is further supported by the more comprehensive understanding of the role of dopamine in the NAc as a "wanting" messenger in the meso-limbic DA system.LifeGen, Inc.; Electronic Waveform Lab; Huntington Beach and Path Research Foundatio

    The Caenorhabditis chemoreceptor gene families

    Get PDF
    Background: Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results: Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Conclusion: Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.JHT was supported by NIH grant RO1GM48700 and HMR by R01AI56081

    Test of variables of attention (TOVA) as a predictor of early attention complaints, an antecedent to dementia

    Get PDF
    The goal of this study was to determine if impairments detected by the test of variables of attention (TOVA) may be used to predict early attention complaints and memory impairments accurately in a clinical setting. We performed a statistical analysis of outcomes in a patient population screened for attention deficit hyperactivity disorder or attention complaints, processing errors as measured by TOVA and the Wechsler Memory Scale (WMS-III) results. Attention deficit disorder (ADD) checklists, constructed using the Diagnostic and Statistical Manual of Mental Disorders 4th Edition criteria, which were completed by patients at PATH Medical, revealed that 72.8% of the patients had more than one attention complaint out of a total of 16 complaints, and 41.5% had more than five complaints. For the 128 males with a significant number of ADD complaints, individuals whose scores were significantly deviant or borderline (SDB) on TOVA, had a significantly greater number of attention complaints compared with normals for omissions (P < 0.02), response time (P < 0.015), and variability (P < 0.005), but not commissions (P > 0.50). For males, the mean scores for auditory, visual, immediate, and working memory scores as measured by the WMS-III were significantly greater for normals versus SDBs on the TOVA subtest, ie, omission (P < 0.01) and response time (P < 0.05), but not variability or commissions. The means for auditory, visual, and immediate memory scores were significantly greater for normals versus SDBs for variability (P < 0.045) only. In females, the mean scores for visual and working memory scores were significantly greater for normals versus SDBs for omissions (P < 0.025). The number of SDB TOVA quarters was a significant predictor for “impaired” or “normal” group membership for visual memory (P < 0.015), but not for the other three WMS-III components. For males, the partial correlation between the number of attention complaints and the number of SDB TOVA quarters was also significant (r = 0.251, P < 0.005). For the 152 females with a significant number of attention complaints, no significant differences between SDBs and normals were observed (P > 0.15). This is the first report, to our knowledge, which provides evidence that TOVA is an accurate predictor of early attention complaints and memory impairments in a clinical setting. This finding is more robust for males than for females between the ages of 40 and 90 years

    Recombination rate and selection strength in HIV intra-patient evolution

    Get PDF
    The evolutionary dynamics of HIV during the chronic phase of infection is driven by the host immune response and by selective pressures exerted through drug treatment. To understand and model the evolution of HIV quantitatively, the parameters governing genetic diversification and the strength of selection need to be known. While mutation rates can be measured in single replication cycles, the relevant effective recombination rate depends on the probability of coinfection of a cell with more than one virus and can only be inferred from population data. However, most population genetic estimators for recombination rates assume absence of selection and are hence of limited applicability to HIV, since positive and purifying selection are important in HIV evolution. Here, we estimate the rate of recombination and the distribution of selection coefficients from time-resolved sequence data tracking the evolution of HIV within single patients. By examining temporal changes in the genetic composition of the population, we estimate the effective recombination to be r=1.4e-5 recombinations per site and generation. Furthermore, we provide evidence that selection coefficients of at least 15% of the observed non-synonymous polymorphisms exceed 0.8% per generation. These results provide a basis for a more detailed understanding of the evolution of HIV. A particularly interesting case is evolution in response to drug treatment, where recombination can facilitate the rapid acquisition of multiple resistance mutations. With the methods developed here, more precise and more detailed studies will be possible, as soon as data with higher time resolution and greater sample sizes is available.Comment: to appear in PLoS Computational Biolog

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Genome-Wide Comparative Gene Family Classification

    Get PDF
    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species
    corecore