5,883 research outputs found

    Geographical Assessment of Microalgae Biofuels Potential Incorporating Resource Availability

    Get PDF
    Previous assessments of the economic feasibility and large-scale productivity of microalgae biofuels have not considered the impacts of land and carbon dioxide (CO2) availability on the scalability of microalgae-based biofuels production. To accurately assess the near-term productivity potential of large-scale microalgae biofuel in the US, a geographically realized growth model was used to simulate microalgae lipid yields based on meteorological data. The resulting lipid productivity potential of Nannochloropsis under large-scale cultivation is combined with land and CO2 resource availability illustrating current geographically feasible production sites and corresponding productivity in the US. Baseline results show that CO2 transport constraints will limit US microalgae based bio-oil production to 4% of the 2030 Department of Energy (DOE) alternative fuel goal. The discussion focuses on synthesis of this large-scale productivity potential results including a sensitivity analysis to land and CO2 resource assumptions, an evaluation of previous modeling efforts and their assumptions regarding the transportation of CO2, the feasibility of microalgae to meet DOE 2030 alternative fuel goals, and a comparison of the productivity potential in several key regions of the US

    High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives

    Get PDF
    We report on n-channel organic field-effect transistors (OFETs) based on the solution processable methanofullerenes [6,6]-phenyl-C61-butyric acid ester ([60]PCBM) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM). Despite the fact that both derivatives form glassy films when processed from solution, their electron mobilities are high and on the order of 0.21 cm2/V s and 0.1 cm2/V s, for [60]PCBM and [70]PCBM, respectively. Although the derived mobility of [60]PCBM is comparable to the best values reported in the literature, the electron mobility of [70]PCBM is the highest value reported to date for any C70 based molecule. We note that this is the only report in which C60 and C70 methanofullerenes exhibit comparable electron mobilities. The present findings could have significant implications in the area of large-area organic electronics and organic photovoltaics where C60 derivatives have so far been the most widely used electron acceptor materials.

    Effect of Light-Cure Initiation Time on Polymerization Efficiency and Orthodontic Bond Strength with a Resin-Modified Glass-Ionomer

    Get PDF
    Objectives –  The polymerization and acid–base reactions in resin-modified glass-ionomers (RMGI) are thought to compete with and inhibit one another. To examine the effect of visible light-cure (VLC) delay on the polymerization efficiency and orthodontic bond strength of a dual-cured RMGI. Setting and Sample Population –  The Orthodontics Graduate Program at Marquette University. An in vitro study utilizing 72 freshly extracted human bicuspid teeth. Materials and Methods –  A RMGI light-cured immediately, 2.5, 5, or 10 min after mixing comprised the experimental groups. Isothermal and dynamic temperature scan differential scanning calorimetry (DSC) analysis of the RMGI was performed to determine extents of VLC polymerization and acid–base reaction exotherms. Human premolars (n = 18/group) were bonded with the RMGI. Shear bond strength and adhesive remnant index (ARI) scores were determined. Results –  Differential scanning calorimetry results showed the 10-min-delay RMGI group experienced significantly (p \u3c 0.05) lower VLC polymerization compared with the other groups. Acid–base reaction exotherms were undetected in all groups except the 10-min delay group. No significant differences (p \u3e 0.05) were noted among the groups for mean shear bond strength. A chi-square test showed no significant difference (p = 0.428) in ARI scores between groups. Conclusions –  Delay in light-curing may reduce polymerization efficiency and alter the structure of the RMGI, but orthodontic shear bond strength does not appear to be compromised

    Double in situ hybridization in combination with digital image analysis: A new approach to study interphase chromosome topography

    Get PDF
    Double in situ hybridization with mercurated and biotinylated chromosome specific DNA probes in combination with digital image analysis provides a new approach to compare the distribution of homologous and nonhomologous chromosome targets within individual interphase nuclei. Here we have used two DNA probes representing tandemly repeated sequences specific for the constitutive heterochromatin of the human chromosomes 1 and 15, respectively, and studied the relative arrangements of these chromosome targets in interphase nuclei of human lymphocytes, amniotic fluid cells, and fibroblasts, cultivated in vitro. We have developed a 2D-image analysis approach which allows the rapid evaluation of large numbers of interphase nuclei. Models to test for a random versus nonrandom distribution of chromosome segments are discussed taking into account the three-dimensional origin of the evaluated 2D-distribution. In all three human diploid cell types the measurements of target-target and target-center distances in the 2D-nuclear image revealed that the labeled segments of the two chromosomes 15 were distributed both significantly closer to each other and closer to the center of the nuclear image than the labeled chromosome 1 segments. This result can be explained by the association of nucleolus organizer regions on the short arm of chromosome 15 with nucleoli located more centrally in these nuclei and does not provide evidence for a homologous association per se. In contrast, evaluation of the interphase positioning of the two chromosome 1 segments fits the random expectation in amniotic fluid and fibroblast cells, while in experiments using lymphocytes a slight excess of larger distances between these homologous targets was occasionally observed. 2D-distances between the labeled chromosome 1 and 15 segments showed a large variability in their relative positioning. In conclusion our data do not support the idea of a strict and permanent association of these homologous and nonhomologous targets in the cell types studied so far

    Local structures of polar wurtzites Zn_{1-x}Mg_{x}O studied by Raman and {67}Zn/{25}Mg NMR spectroscopies and by total neutron scattering

    Full text link
    Local compositions and structures of Zn_{1-x}Mg_{x}O alloys have been investigated by Raman and solid-state {67}Zn/{25}Mg nuclear magnetic resonance (NMR) spectroscopies, and by neutron pair-distribution-function (PDF) analyses. The E2(low) and E2(high) Raman modes of Zn_{1-x}Mg_{x}O display Gaussian- and Lorentzian-type profiles, respectively. At higher Mg substitutions, both modes become broader, while their peak positions shift in opposite directions. The evolution of Raman spectra from Zn_{1-x}Mg_{x}O solid solutions are discussed in terms of lattice deformation associated with the distinct coordination preferences of Zn and Mg. Solid-state magic-angle-spinning (MAS) NMR studies suggest that the local electronic environments of {67}Zn in ZnO are only weakly modified by the 15% substitution of Mg for Zn. {25}Mg MAS spectra of Zn_{0.85}Mg_{0.15}O show an unusual upfield shift, demonstrating the prominent shielding ability of Zn in the nearby oxidic coordination sphere. Neutron PDF analyses of Zn_{0.875}Mg_{0.125}O using a 2x2x1 supercell corresponding to Zn_{7}MgO_{8} suggest that the mean local geometry of MgO_{4} fragments concurs with previous density functional theory (DFT)-based structural relaxations of hexagonal wurtzite MgO. MgO_{4} tetrahedra are markedly compressed along their c-axes and are smaller in volume than ZnO_{4} units by ~6%. Mg atoms in Zn_{1-x}Mg_{x}O have a shorter bond to the cc-axial oxygen atom than to the three lateral oxygen atoms, which is distinct from the coordination of Zn. The precise structure, both local and average, of Zn_{0.875}Mg_{0.125}O obtained from time-of-flight total neutron scattering supports the view that Mg-substitution in ZnO results in increased total spontaneous polarization.Comment: 12 pages, 14 figures, 2 table

    Regular-fat dairy and human health:A Synopsis of Symposia presented in Europe and North America (2014-2015)

    Get PDF
    In recent history, some dietary recommendations have treated dairy fat as an unnecessary source of calories and saturated fat in the human diet. These assumptions, however, have recently been brought into question by current research on regular fat dairy products and human health. In an effort to disseminate, explore and discuss the state of the science on the relationship between regular fat dairy products and health, symposia were programmed by dairy industry organizations in Europe and North America at The Eurofed Lipids Congress (2014) in France, The Dairy Nutrition Annual Symposium (2014) in Canada, The American Society for Nutrition Annual Meeting held in conjunction with Experimental Biology (2015) in the United States, and The Federation of European Nutrition Societies (2015) in Germany. This synopsis of these symposia describes the complexity of dairy fat and the effects regular-fat dairy foods have on human health. The emerging scientific evidence indicates that the consumption of regular fat dairy foods is not associated with an increased risk of cardiovascular disease and inversely associated with weight gain and the risk of obesity. Dairy foods, including regular-fat milk, cheese and yogurt, can be important components of an overall healthy dietary pattern. Systematic examination of the effects of dietary patterns that include regular-fat milk, cheese and yogurt on human health is warranted

    The origin of GEMS in IDPs as deduced from microstructural evolution of amorphous silicates with annealing

    Full text link
    We present laboratory studies of the micro-structural evolution of an amorphous ferro-magnesian silicate, of olivine composition, following thermal annealing under vacuum. Annealing under vacuum was performed at temperatures ranging from 870 to 1020 K. After annealing spheroidal metallic nano-particles (2-50 nm) are found within the silicate films. We interpret this microstructure in terms of a reduction of the initial amorphous silicate FeO component, because of the carbon-rich partial pressure in the furnace due to pumping mechanism. Annealing in a controlled oxygen-rich atmosphere confirms this interpretation. The observed microstructures closely resemble those of the GEMS (Glass with Embedded Metal and Sulphides) found in chondritic IDPs (Interplanetary Dust Particles). Since IDPs contain abundant carbonaceous matter, a solid-state reduction reaction may have occurred during heating in the hot inner regions of the proto-solar disc. Related to this, the presence of forsterite grains grown from the amorphous precursor material clearly demonstrates that condensation from gaseous species is not required to explain the occurrence of forsterite around young protostars and in comets. Forsterite grains in these environments can be formed directly in the solid phase by thermal annealing of amorphous ferro-magnesian silicates under reducing conditions.Comment: 4 pages, 2 figures. Accepted for publication A&A Letter to the Edito
    • …
    corecore