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Abstract 

Previous assessments of the economic feasibility and large-scale productivity of microalgae biofuels have 

not considered the impacts of land and carbon dioxide (CO2) availability on the scalability of microalgae-based 

biofuels production.  To accurately assess the near-term productivity potential of large-scale microalgae biofuel in 

the US, a geographically realized growth model was used to simulate microalgae lipid yields based on 

meteorological data.  The resulting lipid productivity potential of Nannochloropsis under large-scale cultivation is 

combined with land and CO2  resource availability illustrating current geographically feasible production sites and 

corresponding productivity in the US.  Baseline results show that CO2 transport constraints will limit US microalgae 

based bio-oil production to 4% of the 2030 Department of Energy (DOE) alternative fuel goal.  The discussion 

focuses on synthesis of this large-scale productivity potential results including a sensitivity analysis to land and CO2 

resource assumptions, an evaluation of previous modeling efforts and their assumptions regarding the transportation 

of CO2, the feasibility of microalgae to meet DOE 2030 alternative fuel goals, and a comparison of the productivity 

potential in several key regions of the US. 

 

Key Words: Biofuels; GIS; Microalgae; Model; Carbon Dioxide 

Abbreviations: Barrel (bbl), Carbon Dioxide (CO2), Department of Energy (DOE), Geospatial information system 

(GIS) 

Introduction 

The current instability of global oil prices has motivated researchers and entrepreneurs to search for 

alternative sources of transportation fuel and energy [1]. In addition, the increase in the average global temperature 

due to greenhouse gas emissions has renewed interest in biofuels for use in transportation vehicles [2-4].  Compared 

to traditional terrestrial biofuel feedstocks, microalgae are characterized by higher solar energy yield, year-round 

cultivation, the use of lower quality or brackish water, the ability to utilize waste CO2, and the use of less- and 

lower-quality land [5-8].  Microalgae feedstock cultivation can be integrated with large-scale CO2 generating 

processes (e.g., combustion power plants, industrial fermentation facilities) to provide the microalgae with a carbon 

source that enables higher productivities than conventional crops [9].  These scalability advantages have led to an 

increased interest in microalgae as a feedstock for the production of biofuels, but the quantification of the 

productivity potential and economic viability of microalgae biofuels has proven difficult.   
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Assessments of the productivity potential of microalgae-based biofuels reported in literature have varied by 

more than a factor of 17, primarily due to the use of low-order growth and productivity models [7,10-13,6,14,15].  

Previous geographical evaluations of microalgae productivity potential have been based on a simplified growth 

model: the conversion of solar irradiance to biomass using a photosynthetic efficiency [16,17].  This growth 

modeling technique does not incorporate the effects of climate and temperature and thus cannot accurately represent 

a geographically dispersed, large-scale microalgae productivity potential.  [18,17].   

A variety of economic evaluations of the microalgae biofuels process have been performed with results 

varying from the $67 a barrel reported by Huntley and Radalje [19] to the $823 a barrel reported by Davis et al. [20] 

with others reporting values between these two extremes [21,22,12,13,23-29].  The majority of these studies not 

only used simplified growth models but made simplifying assumptions in terms of land and nutrient (CO2) resource 

availability as well.  One example is the common assumption that growth facilities and point source CO2 facilities 

will be collocated.  A variety of studies identify the importance of site selection in terms of resource availability but 

fail to incorporate details for CO2 delivery in the analysis [12,22].  Other studies arbitrarily allocate minimal cost for 

CO2 concentration or procurement or transportation [23,13].  Benneman et al. [21] and Benneman and Oswald [26] 

are the two primary economic studies that incorporate a detailed calculation of the costs for CO2 transportation and 

on site delivery.  Benneman et al. [21] concluded that 4.8 km is the maximum economically feasible distance for 

piping CO2, which corresponds to 13% of the cultivation facility’s overall capital cost.  In a follow-up study, 

Benneman and Oswald [26], reduced the feasible transport distance to 2.4 km.  Lundquist et al. [24] is the only 

recent study to include CO2 transportation cost with assumptions based on these previous studies [21] [26].  In 

general, economic studies of microalgae biofuels assume that CO2 will be a low-cost and readily available nutrient, 

without using modeling or analysis to validate the assumption.   

Previous studies have modeled CO2 resource requirements based on a material balance but failed to model 

supply constraints or economic feasibility of the resource.  To accurately evaluate the large-scale productivity 

potential of microalgae-based biofuels in the US, representative microalgae growth and lipid accumulation models 

validated with industrial scale outdoor growth data must be used in combination with geographically realized 

resource availability data [30,31].  This study presents the use of a photobioreactor growth model which utilizes 

historical meteorological data from 864 geographically diverse US locations to determine potential microalgae 

productivity and corresponding lipid percentage of a large-scale outdoor growth system.  Productivity results are 

integrated with a resource assessment focused on land availability and CO2 resource availability defined through 

economic feasbility to illustrate the current large-scale potential of microalgae in the US.  The discussion focuses on 

an evaluation of the capability of microalgae to meet 2030 DOE alternative fuel goals, as well as sensitivity analysis 

to land and CO2 transport distances, and a critical assesment of states with high microalgae biofuel potential. 

Materials and Methods 

The following sections provide a basic overview of the photobioreactor growth model used to predict 

microalgae growth and lipid content, the data and criteria for the Geospatial Information System (GIS) land analysis, 

and details on the economic assumptions for determining feasible CO2 transport distances.  A schematic of the 

simulation architecture including the biomass and lipid productivity based on species, reactor, metrological data, 

land, and resource analysis is presented in Fig. 1.  The simulation integrates the microalgae growth model which 

predicts biomass and lipid production based on meteorological data, microalgae species characterization, reactor 

configuration, and reactor thermal modeling.  Results from the microalgae growth model are integrated into the 

economic evaluation for CO2 transport distance and the data is then overlaid with land resource data to generate the 

dynamic maps presented.  The microalgae growth model is coded in MatLab
® 

with GIS data presentation performed 

using ArcGIS.  
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Fig. 1 Simulation architecture for resource assessment.  The validated growth model includes species 

characteristics and photobioreactor geometry, water basin temperature and metrological data to predict 

biomass and lipid production.  GIS land availability is defined based on land classification and maximum 

slope.  CO2 economic evaluation incorporates literature and cost data with results from growth modeling.  

End results are dynamic maps illustrating current production locations and corresponding potential 

 

Photobioreactor thermal and growth model 

The photobioreactor modeled (Solix Biosystems Generation 3 photobioreactor) is submerged in a shallow 

pool of water (water basin) to provide structural and thermal stabilization (detailed descriptions of the system 

modeled are presented in the supplementary material).  To incorporate the effects of temperature on growth, a 

thermal model of the water basin incorporating radiative, conductive, and convective heat balance was developed to 

estimate the temperature of the microalgae culture [32].   The water basin model uses inputs of solar radiation, dry-

bulb temperature, dew-point temperature, wind speed, wind direction, cloud cover, and atmospheric pressure to 

calculate the heat balance and temperature of the water basin.  The water basin temperature, which is assumed to be 

equivalent to the culture temperature, is then used as an input, along with corresponding meteorological data, to the 

microalgae growth model.  The cultivation is assumed to shut down when the water basin freezes. Compete details 

on the growth model are presented in Quinn et al. [32]. 

The microalgae growth model, based on this photobioreactor architecture, incorporates 21 species- specific 

and reactor-specific characteristics to represent biomass growth and lipid accumulation. Examples of species 

specific characteristics include maximum growth rate, light saturation, and absorption coefficient.  The 

characteristics of the reactor include spacing, depth, etc.  The model has been shown to accurately represent the 

biomass and lipid production of Nannochloropsis oculata cultivated in Solix Generation 3 photobioreactors based 

on meteorological inputs and culture temperature [31].   

Carbon fixation, based on the activity of the Rubisco enzyme, is the core of the microalgae growth model. 

The model incorporates light, temperature, and nutrients as primary factors, while also considering respiration losses 

and energy required for nutrient uptake.  The productivity potentials presented in this study do not include land 

required for large-scale cultivation infrastructure such as materials storage, transportation, or process infrastructure.  

Instead, they are on a per photosynthetic area basis. The lipid potentials reported are in terms of total lipids produced 

and do not include potential losses from extraction or transesterification.  All assumptions, validation, and details on 

the biological growth are presented in Quinn et al. [31].   

Historical weather data 

Historical hourly weather data from 1991 to 2005 from 864 US locations were input to the photobioreactor 

growth model [33].  The biological growth model used the primary inputs of microalgae temperature and solar 

radiation to predict the biomass and corresponding lipid content on an hourly basis at the simulated locations.  

Biomass and lipid yield results are presented on an annually averaged basis. 
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Geographical information system (GIS) 

The resulting productivity potential of the microalgae growth model at the 864 US locations was used as 

the base layer for the dynamic mapping.  The results are interpolated for the US using an inverse distance weighting 

function in ArcGIS (ESRI)  [34,32].  GIS data of land availability and CO2 resources were then overlaid on the 

productivity data to evaluate feasible microalgae cultivation sites in the US and the corresponding total productivity 

potential.   

Land resource criteria  

The National Land Cover Database from the Multi-Resolution Land Characteristics Consortium was used 

to evaluate the feasible locations for microalgae production based on land classifications.  A scenario where 

microalgae cultivation was only allowed on land classified as barren, scrubland, shrubland, and 

grassland/herbaceous land was determined to be the baseline case, herein referred to as the barren case  [16,35,32]. 

To eliminate land already designated for alternative purposes, the land cover data set was overlaid with federal land 

data, excluding cultivation in areas classified as national parks and forests, national recreation areas, federal research 

areas, and wilderness areas.  Included in the potential cultivation sites were Bureau of Reclamation land and DOE 

sites.  A sensitivity case including cultivation on pasture and forest land is also evaluated.  
Land slope restrictions were determined based on recommendations from the techno-economic analysis 

literature with results indicating a baseline slope criteria where microalgae cultivation is only allowed on land of less 

than 2% slope [21,36,37,32].  Using GIS, slope data was extracted from Shuttle Radar Topography Mission at 90-m 

resolution digital elevation data [38].  Sensitivity to slope was evaluated through analysis allowing cultivation only 

on land of less than 1% slope and less than 5% slope.   

Microalgae cultivation locations were limited to areas with greater than 2000 square meters of land (400 

hectares) based on the recommendations of the microalgae biofuels economics literature.  An equal area projection 

(North America Albers Equal Area Conical Projection) was used to determine the locations that satisfied the farm 

size criteria and land resource constraints.  An analysis that expands the farm size to 4000 hectare was also 

performed.  Details on the change in available land associated with this calculation are presented in the 

supplementary material.   

Economic evaluation for transport distance of carbon dioxide 

Carbon dioxide represents a critical nutrient for microalgae growth [9]. Two data sets, National Carbon 

Sequestration Database and Geographic Information System (NATCARB) and The Emissions & Generation 

Resource Integrated Database (eGRID), were used in an effort to accurately identify the current CO2 point source 

locations in the US [39,40].  The integration of flue gas with microalgae cultivation has been successfully 

demonstrated, however the use of other point source CO2, such as a refinery, has not been extensively evaluated [9]. 

The following CO2 percentages in the corresponding streams were assumed: Amine (MEA)-100%, Natural gas 

power plant-3%, Cement-66%, Manufacturing plant-14%, Ethanol plant-87%, Refinery-7.3%.  This analysis 

assumes that the microalgae biomass being produced is 50% carbon and there is no carbon loss in the transfer from 

the source to the microalgae.  Initially 5280 CO2-emitting locations were identified.  Locations that could not 

provide the required CO2 for a 400 hectare growth facility based on a total daily CO2 output were removed from the 

data set resulting in 2899 possible point CO2 sources. 

An economic assessment of the feasible transport distance of CO2 was performed based on an evaluation of 

the total capital cost of transport infrastructure (pipe and coupling) excluding installation costs.  Installation costs 

were not included due to a large variability in installation cost as a function of geographic location.  Previous 

economic studies from literature have estimated the capital cost for the installation of microalgae biofuel production 

systems with  Sheehan et al. [28] reporting $72,952 per hectare, Davis et al. [13] reporting $99,949, and Lundquist 

et al. [24] reporting $253,963 per hectare.  A synthesis of these studies concluded that a moderate assumption for the 

current capital cost of a large-scale microalgae production is $100,000 per hectare.   In this study, CO2 is transported 

through concrete pipe with mortar joints as it represents the most economical solution of the variety of pipe options 

commercially available.  Concrete pipe with 1.98 m (diameter) pre-cast mortar joints can be purchased for $64 per 

meter (Personal Communication, Hancock Concrete Products, LLC.).  This study evaluates three CO2 transportation 

scenarios: 1) the baseline case, which assumes a transport distance of 4.8 km corresponding to an overall capital cost 
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increase of 8% 2) lower bound, which assumes a maximum transport distance of 1.6 km corresponding an increase 

of 2.7% of the overall capital cost, and 3) an upper bound, which assumes a maximum transport distance of 16 km 

corresponding an increase of 27%.  A survey of the literature indicates 4.8 km (baseline case) represented an 

economically preferable transport distance [21].  A more costly upper bound of 80 km or 137% the capital cost of 

the facility is also analyzed in the overall scalability assessments.  Davis et al. [13] conclude that the current 

microalgae cultivation facility capital costs at $99,949 per hectare are too high, even with their study excluding the 

costs to transport CO2. Thus, the conservative estimate assumed in this study of 4.8km for an 8% increase for the 

transport of CO2, corresponding to the baseline case, is justified.    
Circular buffers were generated at each CO2 site to reflect the amount of feasible land that each CO2 source 

could supply. A maximum buffer size of 1.6 km, 4.8 km (baseline case), 16 km, and 80 km were evaluated.  The 

analysis uses either the maximum buffer size based on the economic evaluation or a smaller buffer size that 

represented the land available based on CO2 supply.  The states of Hawaii and Alaska were not included in this 

study because there were no large CO2 sources with high levels of lipid productivity (>12 m
3
 ha

-1
 yr

-1
). 

Results 

The results from this work are divided into four sections, i) a map illustrating the current realizable 

productivity potential in the continental US based on land resource assessment and farm size, ii) a map illustrating 

the feasible point source CO2 locations, iii) a map illustrating the current realizable productivity potential of 

microalgae in the continental US based on resource availability (land and CO2), and iv) a sensitivity analysis to land 

availability and CO2 transport distance. 

Lipid productivity for baseline land availability 

The modeled lipid productivity potential for microalgae cultivated in a photobioreactor including the 

baseline land availability (barren and <2% slope) and minimum farm size requirement of 400 hectare without CO2 

resource limitation is presented in Fig. 2. Restricting the minimum farm size from 1.25 hectares (land data 

resolution) to 400 hectares reduces the total available cultivation area by approximately 30%.  Increasing the 

minimum farm size to 4000 hectares reduces the total available cultivation area by an additional 35% relative to the 

base case of 400 hectares.  As shown in Fig. 2, the US Desert Southwest has the highest lipid productivity due to its 

extended growing season and high solar radiation.  Interestingly, the US Mountain West has a low productivity 

potential but is only a factor of 2 below the highest productivity rates observed in the southwest.   
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Fig. 2  Lipid productivity (m
3
 ha

-1
 yr

-1
) incorporating minimum facility size and baseline land availability 

(Barren and less than 2% slope) without CO2 resource limitation.  Each Pixel of color represents a minimum 

farm size of 400 hectares. 

Feasible carbon dioxide locations 

Feasible CO2 point sources based on the minimum growth size of 400 hectare are presented in Fig. 3. The 

majority of the CO2 point sources are shown to be located in the eastern US, whereas the majority of the available 

cultivation area is in the western US, as presented in Fig. 2.  
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Fig. 3  Feasible CO2 point source locations for a minimum farm size of 400 ha in the continental US presented 

in ha of land that could be supplied by a single CO2 source without consideration of economic or transport 

constraints.  Color represents serviceable hectares of land. 

 

Potential microalgae cultivation sites co-located with CO2 

The results of overlaying the lipid productivity map incorporating baseline land resource restrictions (Fig. 

2) with a map including the baseline 4.8 km transport buffer around each CO2 source location (Fig. 3) is presented in 

Fig. 4.  The location of each microalgae cultivation site is labeled in Fig. 4, while the lipid productivity (m
3 

ha
-1 

yr
-1

) 

and maximum cultivation area (ha yr
-1

) are represented through color and circle size.  Larger circles represent a 

larger microalgae cultivation area within each buffer.  Zonal statistics were computed in ArcGIS using the output 

map to determine the area of lipid productivity potential within each buffer.  A total of 254 locations were identified 

as potential cultivation sites with the largest single farm being 5600 hectares.  As shown in the extent frame, this 

example region of western Texas has 5 available CO2 sources, allowing for multiple microalgae cultivation facilities 

in each buffer.  Each buffer contains a cultivation site with a lipid productivity of between 20-22 m
3 
ha

-1 
yr

-1
 with the 

differing areas of each cultivation facility results in differently sized circles on the nationwide map.   
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 Fig. 4 Annual lipid productivity for barren land with less than 2% slope, minimum farm size of 400 ha and 

4.8 km CO2 buffer radius.  Circle sizes are not actual size on US map.  Insert is to scale and illustrates the 

high level of detail in the analysis. 

GIS land and CO2 transport sensitivity 

Sensitivity to the assumptions on land availability and CO2 transport distance were performed.  The results 

for the most conservative scenario (A), cultivation on barren land of <1% slope, with a maximum CO2 transport 

distance of 1.6 km,  and the most optimistic scenario presented (D), cultivation on barren, forested, pasture land, of 

<5% slope with a maximum CO2 transport distance of 16 km are presented in Fig. 5.  The number of feasible 

locations for cultivation dramatically changes with resource restrictions.  For the most economically conservative 

and land-use restrictive case (Fig. 5 (A)), 13 cultivation locations were identified, while for the most unrestrictive 

case (Fig. 5 (D)), the number of locations increases to 2045.  These can be compared to 254 locations available for 

the baseline case (Fig. 4).  The total productivity for the scenarios (Fig. 5) are 0.9, 5.7, 252, and 1,606 million 

barrels (bbl) per calendar year for the A, B, C, and D scenarios respectively.  Therefore, microalgae productivity 

potential is found to be very sensitive to assumptions regarding minimum slope, land cover restrictions, and CO2 

transport distance with the productivity varying among these scenarios by a factor of 1784. 
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Fig. 5 Annual lipid productivity of A) Barren land, <1% slope, maximum CO2 transport of 1.6 km, B) barren 

land, <2%, maximum CO2 transport of 1.6 km, C) barren land, <2% slope, maximum CO2 transport of 16 

km, D) Barren, Forested, Pasture land, <5% slope, maximum CO2 transport of 16 km 

Discussion  

Based on these results, the potential of microalgae to meet DOE 2030 goals incorporating geographical 

relevant growth modeling that is integrated with GIS resource availability can be evaluated along with the critical 

evaluation of microalgae productivity potential in individual states. 

Microalgae productivity potential relative to DOE alternative fuel goals 

The US DOE has an alternative fuel goal of replacing 30% (~1 billion barrels) of the transportation fuel 

consumed in the US by 2030 [41].   Current scalability assessments for corn ethanol and soy based biodiesel require 

385% and 148% of the current available farm land in the US, respectively, to meet the 2030 DOE alternative fuel 

goals [12].  The scalability of microalgae biofuels can also be critically evaluated based on this DOE alternative fuel 

goal, as shown in Table 1. 
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Table 1. Land availability and lipid production potential for the baseline and sensitivity scenarios.  The 

baseline case (highlighted by bold text) represents cultivation on all US land with a land classification of 

barren, slope less than 2%, minimum farm size of 400 ha and a CO2 transport distance of 4.8 km.  All 

scenarios include minimum farm size of 400 ha. 

GIS Land 

Classifications 

Available for 

Microalgae Cultivation 

GIS Slope 

Classifications 

Available for 

Microalgae Cultivation 

CO2 Transport 

Distance 

limitation (km) 

Total US Land 

Available for 

Microalgae 

Cultivation 

Total US 

Microalgae 

based Lipid 

Productivity 

(·10
6
 hectares) (·10

9
 bbl) 

Barren <2% 1.6 0.37 0.0057 

Barren <2% 4.8 0.28 0.0437 

Barren <2% 16 1.61 0.252 

Barren <1% 1.6 0.052 0.000855 

Barren <1% 4.8 0.055 0.00846 

Barren <5% 16 3.364 0.506 

Barren, Forested, 

Pasture 
<5% 16 11.78 1.606 

 

This modeling effort represents the current productivity potential of microalgae incorporating 

geographically relevant growth characteristics based on a photobioreactor architecture.  Assuming a packing factor 

of 0.8 [7] and an average lipid productivity of 18 m
3
·ha

-1
·yr

-1
, 10.5 million hectares of land would be required to 

meet the DOE 2030 alternative transportation fuel goal of 1 billion barrels [41].  The results from this study show 

that using baseline GIS land, slope, and farm size criteria with a CO2 transport distance of 4.8 km, the US has 0.28 

million hectares of land available for microalgae cultivation.  This land can potentially produce 44 million barrels of 

oil or 4.4% of the DOE 2030 alternative transportation fuel goal.  These results are in stark contrast to prior and 

more optimistic scalability assessments of microalgae [12,6,42,27,32,5,43].   

If the CO2 transport distance is increased to 80 km, an economically disadvantaged distance (representing a 

137% increase in cultivation facility capital costs), with the available land for cultivation including barren, forested 

and pasture with a slope restriction of less than 5%, microalgae in the continental US could be cultivated on 13.4 

million hectares of land corresponding to 1.8 billion barrels of oil or 1.8 times the DOE alternative fuel goal.  These 

resource assumptions are not economically feasible based on the current state of the technology.   

 

Current productivity potential of microalgae state by state 

An analysis of the productivity potential of the top 10 states based on the baseline scenario (barren land, 

<2% slope, minimum 400 hectare farm size, maximum 4.8 km CO2 transport) with results from resource sensitivity 

are presented in Table 2.  
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Table 2  Oil productivity potential in 10
6
 bbl of the top 10 producing states in the US for the variety of resource 

restrictions. Land restrictions: B=Barren, P=Pasture, F=forested, Slope restrictions: less than 1%, 2%, and 5%, Farm 

size: 400 ha=minimum farm size of 400 hectares, 4000 ha=minimum farm size of 4000 hectares, CO2 transport 

distance: maximum of 1.6 km, 4.8 km, or 16 km.  Baseline case is presented in bold text. 

  Resource Restrictions   

State 

B, <2% B, <2% 

400 ha 

B, <2%,  

4000 ha 
B, <2% 

400ha  

4.8 km 

Barren, <1%  

400 ha 

1.6 km 

B, P, F,  <5%  

400 ha 

16 km 

Texas 2574 1959 1344.2 11.17 0.337 294.1 

California 485 392 262.8 6.70 0.072 58.2 

Arizona 1007 888 707.9 6.68 0.078 84.9 

New Mexico 1257 1092 854.6 5.64 0.215 25.9 

Wyoming 394 263 115.9 2.99 0.102 29.1 

Nevada 738 680 551.5 2.47 0.0 27.5 

Colorado 425 324 192.4 1.80 0.0 27.4 

Utah 407 353 297.9 1.36 0.0 34.0 

Montana 338 179 54.5 0.45 0.0 9.9 

Nebraska 364 204 62.3 0.31 0.0 14.2 

       
Continental US 10277 7365 4762 43.7 0.855 1606 

 

In the evaluation of large-scale oil production from microalgae, the production decreases as resource 

restrictions are implemented as shown in Table 2.  Based on the resource restriction of the baseline scenario, 

microalgae-based biofuels fail to meet DOE 2030 alternative fuel goals; only producing 4.3% of the alternative fuel 

goal.  Each resource restriction evaluated decreases the overall productivity potential.  The implementation of a 

minimum farm size of 400 hectare decreases the productivity potential by 28% relative to including all feasible 

barren land with less than 2% slope.  Starting from feasible cultivation on barren land, less than 2% slope and a 

minimum farm size of 400 hectares and expanding the resource limitation to include a maximum transportation of 

CO2 to 4.8 km based on economic feasibility, microalgae productivity potential decreases by an additional factor of 

169.  Based on this study it is shown that resources such as CO2 represent a limiting factor on the scalability of 

microalgae biofuels. 

The characteristics of intensive microalgae cultivation that enable its economic viability and environmental 

sustainability (high growth rates, low quality land use, high lipid productivity) are also the sources of its resource 

intensity.  These results show that the economics of CO2 transport provide a hard economic limit to the productivity 

potential of highly-intensive microalgae agriculture.  The primary pathways to reducing the impact of the resource 

limitations described in this study are to reduce the transport costs of CO2, and to reduce the dependence of 

microalgae cultivation on gaseous CO2.  Researchers have proposed means to remove this resource limitation, 

including the cultivation of microalgae at low resource intensity and at low productivity [44], but this has been 

shown to have detrimental effects on the economic viability of microalgae biofuels production.  Alternatively, the 

carbon source for microalgae could be a non-gaseous source that does not have strict transportation limitations, [45], 

but the economic feasibility of alternative carbon sources at industrial scale has yet to be investigated. 
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Photobioreactor Growth Facility 

The facility modeled is representative of the Solix generation 3 photobioreactor.  The photobioreactor is 

thermally and structurally supported in a water basin as illustrated in Fig. S1.   

 

Fig. S1  A) schematic drawing of photobioreactors. B) Image of cultivation system modeled courtesy of Solix 

Biosystems.  Photobioreactors are structurally and thermally supported in a water basin.  The water basin pictured is 

approximately 40 m x 25m x 1.2 m. 

The system is not actively thermally managed (no heat or cooling is supplied).  In terms of the temperature, 

the photobioreactors will be well mixed based on sparge air mixing with no thermal stratification in the 

photobioreactors.  The basins which represent the structural and thermal support component of the system does not 

get mixed by sparge air thus could have the potential to have thermal stratification as it represents over 70% of the 

thermal mass of the system.  More details on the facility are presented in Quinn et al. [1]. The system modeled is 

A) 

B) 



representative of the outdoor research and development facility that has been in continuous operation since 2008 in 

Fort Collins, CO [2].    

Equal Area Projection: 112 m resolution vs 2000 m resolution  

The land resource analysis included the adaptation of a minimum farm size.  A variety of researchers have 

performed techno-economic and life-cycle work that utilize a unit farm size [3-8].  Wigmosta et al. [7] assume a 490 

hectare facility that incorporates 90 hectares of infrastructure.  Davis et al. [5] model a facility that is 2909 hectares 

with two thirds growth one third processing in their economic assessment.  Frank et al. [6] performed a lifecycle 

assessment that is based on a 4712 hectare facility.  Lundquist et al. [8] model a 100 and a 400 hectare facility.  

Benneman et al.  [3] uses a base case  farm size of 800 hectares.  Further analysis in Benneman and Oswald [4] used 

a base case size of 400 hectares.  Based on this survey of the literature a base case facility size of 400 hectares was 

used in this study.  The resolution of the land classification data was changed from 112m to 2000 m.  An evaluation 

of the change in available land and corresponding productivity is presented in Table S1. 

Table S1. US total production based on the land cover data at a resolution of 112 m and 2000 m 

Production Area (ha) Lipid Productivity (bbl) 

  Barren Barren, Forest, Pasture Barren Barren, Forest, Pasture 

 

2% 5% 2% 5% 

112 m 6.89E+07 2.58E+08 1.02E+10 3.58E+10 

2000 m  4.79E+07 2.35E+08 7.38E+09 3.30E+10 

 

Decreasing the resolution of the land cover data such that only farms of 400 hectares (2000 m by 2000m) 

are represented decreases the overall productivity.  The available land and corresponding productivity for the 

baseline case (Barren, <2%) decreases by approximately 30%.  A visual representation of change in land is 

presented in Fig. S2. 



 

Fig. S2. A) Baseline land availability scenario (Barren, <2% slope) with 1.2 hectare farm size. B)  Baseline land 

availability scenario (Barren, <2% slope) with 400 hectare farm size. C) Barren, forest, and pasture land with <5% 

slope at 1.2 hectare farm size D) Barren, forest, and pasture land with <5% slope at 400 hectare farm size 

As illustrated in Fig. S2, the requirement of a minimum farm size decreases the available land for both land 

scenarios considered.  The change in available land is expected as small farms (less than 400 hectares) are not 

feasible based on economy of scale. 

Dynamic Maps 

Dynamic maps for the various sensitivity cases were generated and presented below.  The first figures do 

not include the resource evaluation of CO2 and just includes land resource assessment and productivity potential. 

A) B) 

C) D) 



 

Fig. S3. Barren land, <1% slope, minimum farm size of 400 ha, no CO2 buffers

 
 Fig. S4. Barren land, <2% slope, minimum farm size of 400 ha, no CO2 buffers 



 

Fig. S5. Barren land, <5% slope, minimum farm size of 400 ha, no CO2 buffers 

 

Fig. S6. Barren, pasture, and forest land, <5% slope, minimum farm size of 400 ha, no CO2 buffers 



The figures above demonstrate the increase of available land and lipid productivity area as the land type 

and slope are expanded.  The increase in microalgae potential growth area can be seen in the extent window of west 

Texas as the allowable slope is increased.  Potential area in west Texas does not change between Fig. 3 and Fig. 4 

because the slope remains constant and there was no addition of forest or pasture land.   

The inclusion of CO2 as a resource limitation dramatically decreases the available land.  The following 

figures present dynamic maps that include productivity potential, land resource assessment and CO2 transport 

limitations.

 

Fig. S7. Barren land, <2% slope, minimum farm size of 400 ha, 1.6 km buffer 

The resource restrictions of barren land with less than 2% slope and a 1.6 km buffer around the CO2 sources 

is shown in Fig. S7.  In the extent window, the grey circles represent the 1.6 km buffer and only one or two lipid 

productivity areas located within each.  The maximum area within one buffer for this case is 1200 ha which would 

be three colored cells at 400 ha each.  Individual CO2 locations were difficult to see on the nationwide map due to 

the small buffer size of 1.6 km, so the lipid productivity (m
3 
ha

-1 
yr

-1
) and maximum area (ha yr

-1
) were represented 

by color and circle size.  Larger circles represent more microalgae potential area within each buffer. 



 

Fig. S8. Barren land, <2% slope, minimum farm size of 400 ha, 16 km buffer 

Resource restrictions of barren land with less than 2% slope, a minimum farm size of 400 ha and 16 km 

buffer is shown in Fig. S8.  The sixteen kilometer buffers are the grey circles show in the extent window, showing a 

closer view of west Texas. At this buffer size, it is easier to see the different number of potential growth facilities 

within each buffer.   



 

Fig. S9 Barren, forest, pasture land, <5% slope, minimum farm size of 400 ha, 1.6 km buffer 

Resource restrictions of barren, forest, and pasture land with less than 5% slope, a minimum far size of 400 

ha and a 1.6 km buffer around CO2 sources is show in Fig. S9.  For this case, the maximum area within one buffer is 

1600 ha, and area within each buffer is represented by different sized circles and color coded by lipid productivity 

potential.  



 

Fig. S10.  Annual lipid productivity for barren, forest, and pasture land with slope less than 5%, minimum farm size 

of 400 ha,  and a 16 km CO2 buffer radius 

 

 

Fig. S11 Barren, forest, pasture land, <5% slope, minimum farm size of 400 ha,  and a maximum of 80 km CO2 

transport 



Barren, forest, and pasture land with less than 5% slope, a minimum farm size of 400 ha and 80 km buffers 

around CO2 sources is show in Fig. S11.  At certain locations, it was determined that the 80 km buffer radius 

incorporated more potential growth area than the CO2 source could support.  Buffers at these locations were adjusted 

to more accurately depict the microalgae area possible.   

 

Fig. S12 Barren land, <1% slope, minimum farm size of 400 ha, and 1.6 km CO2 buffer 

 

Fig. S13 Barren land, <1% slope, minimum farm size of 400 ha, and 4.8 km buffer 



 

Fig. S14 Barren land, <1% slope, minimum farm size of 400 ha, and 16 km buffer 

 

Fig. S15 Barren land, <1% slope, minimum farm size of 400 ha, and 80 km CO2 buffer 

 



 

Fig. S16. Lipid productivity area for the different land restrictions and CO2 buffer radii 

Lipid productivity area was determined by zonal statistics in ArcGIS.  The area ArcGIS calculated was 

used at each CO2 location, unless it exceeded the maximum productivity values established, in which case the 

maximum productivity value was used.  Summing the area within each buffer totaled to the lipid productivity and a 

comparison for the different scenarios is shown in Fig. S16, on a log scale.  

 

Fig. S17 Annual Lipid Productivity for barren land, with less than 2% slope and no CO2 locations considered 

Annual lipid productivity for barren land with less than two percent slope is shown in Fig. S17 with no 

CO2 source locations taken into consideration. 
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