11 research outputs found

    Higher-order QED effects in hadronic processes

    Full text link
    In this presentation, we describe the computation of higher-order QED effects relevant in hadronic collisions. In particular, we discuss the calculation of mixed QCD-QED one-loop contributions to the Altarelli-Parisi splittings functions, as well as the pure two-loop QED corrections. We explain how to extend the DGLAP equations to deal with new parton distributions, emphasizing the consequences of the novel corrections in the determination (and evolution) of the photon distributions.Comment: 7 pages, 2 figures. Contribution to the Proceedings of the EPS-HEP 2017 Conferenc

    Additional file 2: of A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers

    No full text
    Table S1. The list of 119 FDA-approved oncology drugs provided by the National Cancer Institute (NCI) tested for synergy with DOX treatment in Hep3B/shHK2DOX cells. Table S2. Synergy between HK2 inhibition and DPI. (DOCX 44 kb

    Additional file 1: of A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers

    No full text
    Figure S1. HK1−HK2+ cancer cells are highly sensitive to HK2 knockdown-induced growth inhibition. Figure S2. DPI synergizes with HK2 knockdown or inhibition in HK1−HK2+ liver cancer cells. Figure S3. DPI synergizes with HK2 silencing/inhibition by targeting mitochondrial complex I in HK1−HK2+ liver cancer cells. Figure S4. HK isoform expression in Hep3B/shHK2DOX xenograft tumors with DOX and/or DPI treatments. Figure S5. Inhibition of fatty acid oxidation sensitizes HK1−HK2+ liver cancer cells to the HK2 inhibition/DPI combination. Figure S6. Modulation of HK1−HK2+ liver cancer cellular metabolism by the HK2i/DPI/PER combination. Figure S7. PER as a single agent does not have a significantly detectable effect on growth of subcutaneous Hep3B/shHK2DOX tumors. (PPTX 782 kb

    Additional file 8: of Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities

    Get PDF
    IDH1 mutant overexpression leads to high levels of 2-HG and the c227 inhibitor is an effective inhibitor of 2-HG formation. IDH wildtype gliomaspheres transduced with the IDH1 mutant enzyme (308 + IDH1mut) and endogenous IDH1 mutant cells treated with 5 μM c227 inhibitor (213 + c227) for 24 h are compared to their respective controls (308 and 213) for 2-HG levels as determined by LC-MS. Data represent the means ± SEM of three replicates per condition. (PDF 22 kb

    Additional file 8: of Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities

    No full text
    IDH1 mutant overexpression leads to high levels of 2-HG and the c227 inhibitor is an effective inhibitor of 2-HG formation. IDH wildtype gliomaspheres transduced with the IDH1 mutant enzyme (308 + IDH1mut) and endogenous IDH1 mutant cells treated with 5 μM c227 inhibitor (213 + c227) for 24 h are compared to their respective controls (308 and 213) for 2-HG levels as determined by LC-MS. Data represent the means ± SEM of three replicates per condition. (PDF 22 kb

    Additional file 10: of Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities

    No full text
    Effects of pharmacologic inhibition of the IDH1 mutant enzyme on TCA cycle intermediates. Cells were analyzed as described in Supporting Figure S5. Left: Metabolites with significantly different percent glucose labeling of metabolites in the endogenous IDH1 mutant line 213 treated with c227 inhibitor or control (p < 0.05). Right: Percent labeling from endogenous IDH1 mutant and IDH wildtype groups for metabolites that were not significantly different. (PDF 206 kb
    corecore