5 research outputs found

    Reinforcement Learning with Neural Networks for Quantum Feedback

    Full text link
    Machine learning with artificial neural networks is revolutionizing science. The most advanced challenges require discovering answers autonomously. This is the domain of reinforcement learning, where control strategies are improved according to a reward function. The power of neural-network-based reinforcement learning has been highlighted by spectacular recent successes, such as playing Go, but its benefits for physics are yet to be demonstrated. Here, we show how a network-based "agent" can discover complete quantum-error-correction strategies, protecting a collection of qubits against noise. These strategies require feedback adapted to measurement outcomes. Finding them from scratch, without human guidance, tailored to different hardware resources, is a formidable challenge due to the combinatorially large search space. To solve this, we develop two ideas: two-stage learning with teacher/student networks and a reward quantifying the capability to recover the quantum information stored in a multi-qubit system. Beyond its immediate impact on quantum computation, our work more generally demonstrates the promise of neural-network-based reinforcement learning in physics.Comment: 7 pages maintext + methods + supplementary, 6 maintext figures; for related lectures, see: http://machine-learning-for-physicists.or

    L lines, C points and Chern numbers: understanding band structure topology using polarization fields

    Get PDF
    Abstract Topology has appeared in different physical contexts. The most prominent application is topologically protected edge transport in condensed matter physics. The Chern number, the topological invariant of gapped Bloch Hamiltonians, is an important quantity in this field. Another example of topology, in polarization physics, are polarization singularities, called L lines and C points. By establishing a connection between these two theories, we develop a novel technique to visualize and potentially measure the Chern number: it can be expressed either as the winding of the polarization azimuth along L lines in reciprocal space, or in terms of the handedness and the index of the C points. For mechanical systems, this is directly connected to the visible motion patterns

    Observing polarization patterns in the collective motion of nanomechanical arrays

    Get PDF
    In recent years, nanomechanics has evolved into a mature field, and it has now reached a stage which enables the fabrication and study of ever more elaborate devices. This has led to the emergence of arrays of coupled nanomechanical resonators as a promising field of research serving as model systems to study collective dynamical phenomena such as synchronization or topological transport. From a general point of view, the arrays investigated so far can be effectively treated as scalar fields on a lattice. Moving to a scenario where the vector character of the fields becomes important would unlock a whole host of conceptually interesting additional phenomena, including the physics of polarization patterns in wave fields and their associated topology. Here we introduce a new platform, a two-dimensional array of coupled nanomechanical pillar resonators, whose orthogonal vibration directions encode a mechanical polarization degree of freedom. We demonstrate direct optical imaging of the collective dynamics, enabling us to analyze the emerging polarization patterns, follow their evolution with drive frequency, and identify topological polarization singularities.publishe
    corecore