3,293 research outputs found

    Electroweak Bremsstrahlung in Dark Matter Annihilation

    Full text link
    A conservative upper bound on the total dark matter (DM) annihilation rate can be obtained by constraining the appearance rate of the annihilation products which are hardest to detect. The production of neutrinos, via the process χχνˉν\chi \chi \to \bar\nu \nu , has thus been used to set a strong general bound on the dark matter annihilation rate. However, Standard Model radiative corrections to this process will inevitably produce photons which may be easier to detect. We present an explicit calculation of the branching ratios for the electroweak bremsstrahlung processes χχνˉνZ\chi \chi \to \bar\nu \nu Z and χχνˉeW\chi \chi \to \bar\nu e W. These modes inevitably lead to electromagnetic showers and further constraints on the DM annihilation cross-section. In addition to annihilation, our calculations are also applicable to the case of dark matter decay.Comment: 7 pages, 4 figures. New appendix with an extensive discussion of Majorana fermions and helicity suppression

    The Scientific Reach of Multi-Ton Scale Dark Matter Direct Detection Experiments

    Get PDF
    The next generation of large scale WIMP direct detection experiments have the potential to go beyond the discovery phase and reveal detailed information about both the particle physics and astrophysics of dark matter. We report here on early results arising from the development of a detailed numerical code modeling the proposed DARWIN detector, involving both liquid argon and xenon targets. We incorporate realistic detector physics, particle physics and astrophysical uncertainties and demonstrate to what extent two targets with similar sensitivities can remove various degeneracies and allow a determination of dark matter cross sections and masses while also probing rough aspects of the dark matter phase space distribution. We find that, even assuming dominance of spin-independent scattering, multi-ton scale experiments still have degeneracies that depend sensitively on the dark matter mass, and on the possibility of isospin violation and inelasticity in interactions. We find that these experiments are best able to discriminate dark matter properties for dark matter masses less than around 200 GeV. In addition, and somewhat surprisingly, the use of two targets gives only a small improvement (aside from the advantage of different systematics associated with any claimed signal) in the ability to pin down dark matter parameters when compared with one target of larger exposure.Comment: 23 pages; updated to match PRD versio

    Searching for Dark Matter at the LHC with a Mono-Z

    Full text link
    We investigate a mono-Z process as a potential dark matter search strategy at the LHC. In this channel a single Z boson recoils against missing transverse momentum, attributed to dark matter particles, χ\chi, which escape the detector. This search strategy is related, and complementary to, monojet and monophoton searches. For illustrative purposes we consider the process qqˉ>χχZq\bar{q} -> \chi\chi Z in a toy dark matter model, where the Z boson is emitted from either the initial state quarks, or from the internal propagator. Among the signatures of this process will be a pair of muons with high pT that reconstruct to the invariant mass of the Z, and large amounts of missing transverse energy. Being a purely electroweak signal, QCD and other Standard Model backgrounds are relatively easily removed with modest selection cuts. We compare the signal to Standard Model backgrounds and demonstrate that, even for conservative cuts, there exist regions of parameter space where the signal may be clearly visible above background in future LHC data, allowing either new discovery potential or the possibility of supplementing information about the dark sector beyond that available from other observable channels.Comment: 11 pages, 13 figure

    Dark Matter Annihilation Signatures from Electroweak Bremsstrahlung

    Full text link
    We examine observational signatures of dark matter annihilation in the Milky Way arising from electroweak bremsstrahlung contributions to the annihilation cross section. It has been known for some time that photon bremsstrahlung may significantly boost DM annihilation yields. Recently, we have shown that electroweak bremsstrahlung of W and Z gauge bosons can be the dominant annihilation channel in some popular models with helicity-suppressed 2 --> 2 annihilation. W/Z-bremsstrahlung is particularly interesting because the gauge bosons produced via annihilation subsequently decay to produce large correlated fluxes of electrons, positrons, neutrinos, hadrons (including antiprotons) and gamma rays, which are all of importance in indirect dark matter searches. Here we calculate the spectra of stable annihilation products produced via gamma/W/Z-bremsstrahlung. After modifying the fluxes to account for the propagation through the Galaxy, we set upper bounds on the annihilation cross section via a comparison with observational data. We show that stringent cosmic ray antiproton limits preclude a sizable dark matter contribution to observed cosmic ray positron fluxes in the class of models for which the bremsstrahlung processes dominate.Comment: 11 pages, 6 figures. Updated to match PRD versio

    Robust Constraints on Dark Matter Annihilation into Gamma Rays and Charged Particles

    Full text link
    Using gamma-ray data from observations of the Milky Way, Andromeda (M31), and the cosmic background, we calculate conservative upper limits on the dark matter self-annihilation cross section to a number of final states, over a wide range of dark matter masses. We first constrain annihilation to a pair of monoenergetic gamma rays, and show that in general our results are unchanged for a broader annihilation spectrum, if at least a few gamma rays are produced with energies within a factor of a few from the dark matter mass. We then place constraints on the self-annihilation cross section to an electron-positron pair, using gamma rays produced via internal bremsstrahlung radiative corrections. We also place constraints on annihilation into the other charged leptons. We make conservative assumptions about the astrophysical inputs, and demonstrate how our derived bounds would be strengthened if stronger assumptions about these inputs are adopted.Comment: 7 pages, 5 figures. Talk given at DSU 09, Melbourne, Australia, June 200

    An Approach to Catheter Ablation of Cavotricuspid Isthmus Dependent Atrial Flutter

    Get PDF
    Much of our understanding of the mechanisms of macro re-entrant atrial tachycardia comes from study of cavotricuspid isthmus (CTI) dependent atrial flutter. In the majority of cases, the diagnosis can be made from simple analysis of the surface ECG. Endocardial mapping during tachycardia allows confirmation of the macro re-entrant circuit within the right atrium while, at the same time, permitting curative catheter ablation targeting the critical isthmus of tissue located between the tricuspid annulus and the inferior vena cava. The procedure is short, safe and by demonstration of an electrophysiological endpoint - bidirectional conduction block across the CTI - is associated with an excellent outcome following ablation. It is now fair to say that catheter ablation should be considered as a first line therapy for patients with documented CTI-dependent atrial flutter

    W/Z Bremsstrahlung as the Dominant Annihilation Channel for Dark Matter, Revisited

    Get PDF
    We revisit the calculation of electroweak bremsstrahlung contributions to dark matter annihilation. Dark matter annihilation to leptons is necessarily accompanied by electroweak radiative corrections, in which a WW or ZZ boson is also radiated. Significantly, while many dark matter models feature a helicity suppressed annihilation rate to fermions, bremsstrahlung process can remove this helicity suppression such that the branching ratios Br(νW\ell \nu W ), Br(+Z\ell^+\ell^-Z), and Br(νˉνZ\bar\nu \nu Z) dominate over Br(+\ell^+\ell^-) and Br(νˉν\bar\nu \nu). We find this is most significant in the limit where the dark matter mass is nearly degenerate with the mass of the boson which mediates the annihilation process. Electroweak bremsstrahlung has important phenomenological consequences both for the magnitude of the total dark matter annihilation cross section and for the character of the astrophysical signals for indirect detection. Given that the WW and ZZ gauge bosons decay dominantly via hadronic channels, it is impossible to produce final state leptons without accompanying protons, antiprotons, and gamma rays.Comment: 8 pages, 6 figures; replaced to match published versio

    W/Z Bremsstrahlung as the Dominant Annihilation Channel for Dark Matter

    Full text link
    Dark matter annihilation to leptons, χχllˉ\chi \chi \rightarrow l \bar{l}, is necessarily accompanied by electroweak radiative corrections, in which a W or Z boson is radiated from a final state particle. Given that the W and Z gauge bosons decay dominantly via hadronic channels, it is thus impossible to produce final state leptons without accompanying protons, antiprotons, and gamma rays. Significantly, while many dark matter models feature a helicity suppressed annihilation rate to fermions, radiating a massive gauge boson from a final state fermion removes this helicity suppression, such that the branching ratios Br(l \nu W), Br(l^+l^- Z), and Br(\nu\nubar Z) dominate over Br(l\bar{l}). W/Z-bremsstrahlung thus allows indirect detection of many WIMP models that would otherwise be helicity-suppressed, or v^2 suppressed. Antiprotons and even anti-deuterons become consequential final state particles. This is an important result for future DM searches. We discuss the implications of W/Z-bremsstrahlung for "leptonic" DM models which aim to fit recent cosmic ray positron and antiproton data.Comment: 19 pages, 5 figures. Updated to include Erratum, and changes made to PRD versio
    corecore