23 research outputs found

    Assortative mating and within-spouse pair comparisons

    Get PDF
    Spousal comparisons have been proposed as a design that can both reduce confounding and estimate effects of the shared adulthood environment. However, assortative mating, the process by which individuals select phenotypically (dis)similar mates, could distort associations when comparing spouses. We evaluated the use of spousal comparisons, as in the within-spouse pair (WSP) model, for aetiological research such as genetic association studies. We demonstrated that the WSP model can reduce confounding but may be susceptible to collider bias arising from conditioning on assorted spouse pairs. Analyses using UK Biobank spouse pairs found that WSP genetic association estimates were smaller than estimates from random pairs for height, educational attainment, and BMI variants. Within-sibling pair estimates, robust to demographic and parental effects, were also smaller than random pair estimates for height and educational attainment, but not for BMI. WSP models, like other within-family models, may reduce confounding from demographic factors in genetic association estimates, and so could be useful for triangulating evidence across study designs to assess the robustness of findings. However, WSP estimates should be interpreted with caution due to potential collider bias

    A comparison of the genes and genesets identified by GWAS and EWAS of fifteen complex traits.

    Get PDF
    Identifying genomic regions pertinent to complex traits is a common goal of genome-wide and epigenome-wide association studies (GWAS and EWAS). GWAS identify causal genetic variants, directly or via linkage disequilibrium, and EWAS identify variation in DNA methylation associated with a trait. While GWAS in principle will only detect variants due to causal genes, EWAS can also identify genes via confounding, or reverse causation. We systematically compare GWAS (N > 50,000) and EWAS (N > 4500) results of 15 complex traits. We evaluate if the genes or gene ontology terms flagged by GWAS and EWAS overlap, and find substantial overlap for diastolic blood pressure, (gene overlap P = 5.2 × 10-6; term overlap P = 0.001). We superimpose our empirical findings against simulated models of varying genetic and epigenetic architectures and observe that in most cases GWAS and EWAS are likely capturing distinct genesets. Our results indicate that GWAS and EWAS are capturing different aspects of the biology of complex traits

    Coronary artery disease, genetic risk and the metabolome in young individuals [version 2; referees: 2 approved]

    Get PDF
    Background: Genome-wide association studies have identified genetic variants associated with coronary artery disease (CAD) in adults – the leading cause of death worldwide. It often occurs later in life, but variants may impact CAD-relevant phenotypes early and throughout the life-course. Cohorts with longitudinal and genetic data on thousands of individuals are letting us explore the antecedents of this adult disease. Methods: 148 metabolites, with a focus on the lipidome, measured using nuclear magnetic resonance (1H-NMR) spectroscopy, and genotype data were available from 5,907 individuals at ages 7, 15, and 17 years from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Linear regression was used to assess the association between the metabolites and an adult-derived genetic risk score (GRS) of CAD comprising 146 variants. Individual variant-metabolite associations were also examined. Results: The CAD-GRS associated with 118 of 148 metabolites (false discovery rate [FDR] < 0.05), the strongest associations being with low-density lipoprotein (LDL) and atherogenic non-LDL subgroups. Nine of 146 variants in the GRS associated with one or more metabolites (FDR < 0.05). Seven of these are within lipid loci: rs11591147 PCSK9, rs12149545 HERPUD1-CETP, rs17091891 LPL, rs515135 APOB, rs602633 CELSR2-PSRC1, rs651821 APOA5, rs7412 APOE-APOC1. All associated with metabolites in the LDL or atherogenic non-LDL subgroups or both including aggregate cholesterol measures. The other two variants identified were rs112635299 SERPINA1 and rs2519093 ABO. Conclusions: Genetic variants that influence CAD risk in adults are associated with large perturbations in metabolite levels in individuals as young as seven. The variants identified are mostly within lipid-related loci and the metabolites they associated with are primarily linked to lipoproteins. Along with further research, this knowledge could allow for preventative measures, such as increased monitoring of at-risk individuals and perhaps treatment earlier in life, to be taken years before any symptoms of the disease arise

    Assessing the role of genome-wide DNA methylation between smoking and risk of lung cancer using repeated measurements: the HUNT Study

    Get PDF
    Background - It is unclear if smoking-related DNA methylation represents a causal pathway between smoking and risk of lung cancer. We sought to identify novel smoking-related DNA methylation sites in blood, with repeated measurements, and to appraise the putative role of DNA methylation in the pathway between smoking and lung cancer development. Methods - We derived a nested case-control study from the Trøndelag Health Study (HUNT), including 140 incident patients who developed lung cancer during 2009–13 and 140 controls. We profiled 850 K DNA methylation sites (Illumina Infinium EPIC array) in DNA extracted from blood that was collected in HUNT2 (1995–97) and HUNT3 (2006–08) for the same individuals. Epigenome-wide association studies (EWAS) were performed for a detailed smoking phenotype and for lung cancer. Two-step Mendelian randomization (MR) analyses were performed to assess the potential causal effect of smoking on DNA methylation as well as of DNA methylation (13 sites as putative mediators) on risk of lung cancer. Results - The EWAS for smoking in HUNT2 identified associations at 76 DNA methylation sites (P –8), including 16 novel sites. Smoking was associated with DNA hypomethylation in a dose-response relationship among 83% of the 76 sites, which was confirmed by analyses using repeated measurements from blood that was collected at 11 years apart for the same individuals. Two-step MR analyses showed evidence for a causal effect of smoking on DNA methylation but no evidence for a causal link between DNA methylation and the risk of lung cancer. Conclusions - DNA methylation modifications in blood did not seem to represent a causal pathway linking smoking and the lung cancer risk

    Efficacy and safety of indacaterol 150 μg once-daily in COPD: a double-blind, randomised, 12-week study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indacaterol is a novel, once-daily (o.d.) inhaled, long-acting <it>β</it><sub>2</sub>-agonist in development for chronic obstructive pulmonary disease (COPD). This 12-week, double-blind study compared the efficacy, safety, and tolerability of indacaterol to that of placebo in patients with moderate-to-severe COPD.</p> <p>Methods</p> <p>Efficacy variables included 24-h trough FEV<sub>1 </sub>(mean of 23 h 10 min and 23 h 45 min post-dose) at Week 12 (primary endpoint) and after Day 1, and the percentage of COPD days with poor control (i.e., worsening symptoms). Safety was assessed by adverse events (AEs), mean serum potassium and blood glucose, QTc (Fridericia), and vital signs.</p> <p>Results</p> <p>Patients were randomised (n = 416, mean age 63 years) to receive either indacaterol 150 <it>μ</it>g o.d. (n = 211) or placebo (n = 205) via a single-dose dry-powder inhaler; 87.5% completed the study. Trough FEV<sub>1 </sub>(LSM ± SEM) at Week 12 was 1.48 ± 0.018 L for indacaterol and 1.35 ± 0.019 L for placebo, a clinically relevant difference of 130 ± 24 mL (p < 0.001). Trough FEV<sub>1 </sub>after one dose was significantly higher with indacaterol than placebo (p < 0.001). Indacaterol demonstrated significantly higher peak FEV<sub>1 </sub>than placebo, both on Day 1 and at Week 12, with indacaterol-placebo differences (LSM ± SEM) of 190 ± 28 (p < 0.001) and 160 ± 28 mL (p < 0.001), respectively. Standardised AUC measurements for FEV<sub>1 </sub>(between 5 min and 4 h, 5 min and 1 h, and 1 and 4 h post-dose) at Week 12 were all significantly greater with indacaterol than placebo (p < 0.001), with LSM (± SEM) differences of 170 ± 24, 180 ± 24, and 170 ± 24 mL, respectively. Indacaterol significantly reduced the percentage of days of poor control versus placebo by 22.5% (p < 0.001) and was also associated with significantly reduced use of rescue medication (p < 0.001). The overall rates of AEs were comparable between the groups (indacaterol 49.3%, placebo 46.8%), with the most common AEs being COPD worsening (indacaterol 8.5%, placebo 12.2%) and cough (indacaterol 6.2%, placebo 7.3%). One patient died in the placebo group. Serum potassium and blood glucose levels did not differ significantly between the two groups, and no patient had QTc >500 ms.</p> <p>Conclusions</p> <p>Indacaterol 150 <it>μ</it>g o.d. provided clinically significant and sustained bronchodilation, reduced rescue medication use, and had a safety and tolerability profile similar to placebo.</p> <p>Trial registration</p> <p>NCT00624286</p

    Data from EWAS of ALSPAC variables (09-2020)

    No full text
    Epigenome wide association studies have been performed on 400 traits in the Avon Longitudinal Study of Parents and Children (EWAS). Full details are presented in the following paper

    Data from EWAS of ALSPAC variables (09-2020)

    No full text
    Epigenome wide association studies have been performed on 400 traits in the Avon Longitudinal Study of Parents and Children (EWAS). Full details are presented in the following paper
    corecore