13,297 research outputs found
A chemoselective polarity-mismatched photocatalytic C(sp3)–C(sp2) cross-coupling enabled by synergistic boron activation
Funding: J.B. thanks AstraZeneca and the Engineering and Physical Sciences Research Council (EPSRC) for a PhD studentship. A.J.B.W. thanks the Leverhulme Trust for a Research Fellowship (RF-2022-014) and the EPSRC Programme Grant “Boron: Beyond the Reagent” (EP/W007517) for support.We report the development of a C(sp3)–C(sp2) coupling reaction using styrene boronic acids and redox-active esters under photoredox catalysis. The reaction proceeds through an unusual polarity-mismatched radical addition mechanism that is orthogonal to established processes. Synergistic activation of the radical precursor and organoboron are critical mechanistic events. Activation of an N-hydroxyphthalimide (NHPI) ester by coordination to boron enables electron transfer, with decomposition leading to a nucleofuge rebound, activating the organoboron to radical addition. The unique mechanism enables chemoselective coupling of styrene boronic acids in the presence of other alkene radical acceptors. The scope and limitations of the reaction, and a detailed mechanistic investigation are presented.Publisher PDFPeer reviewe
Identification of T cell stimulatory epitopes from the 18 kDa protein of Mycobacterium leprae
We have used different mouse strains to examine in vivo and in vitro responses to the 18 kDa protein of Mycobacterium leprae, which appears to be strongly immunogenic in both mice and humans. B and T cell stimulatory epitopes recognised by different strains of mice have been mapped using overlapping peptides that span the entire 18 kDa protein. Previous work established that Immunization of mice with the 18 kDa protein results in specific antibody production to common B cell epitopes and immunization of mice with peptides containing these B cell epitopes resulted in the induction of specific IgG to only a limited subset of epitopes in each strain. Now we report that T cells purified from mice immunized with peptides that stimulate antibody production, proliferate in vitro when rechallenged. The proliferating T cells produce levels of IL-2 and IFN-γ, that indicate antigen-specific T helper type 1 cells are present in significant numbers. Thus, a comparison of in vivo and in vitro data suggests that T cells bearing the phenotype associated with potentially protective cell-mediated responses can be primed in vivo by epitopes on small peptides. Since T cells from both strains of mice are capable of responding to the immunogenic synthetic peptides in vitro, but give different responses to the same peptides in vivo, factors other than epltope structure appear to influence T cell subset activation. This may have important implications for diseases such as leprosy where a polarized T cell response appears to develop and for the development of synthetic subunit vaccine
Signatures of High-Intensity Compton Scattering
We review known and discuss new signatures of high-intensity Compton
scattering assuming a scenario where a high-power laser is brought into
collision with an electron beam. At high intensities one expects to see a
substantial red-shift of the usual kinematic Compton edge of the photon
spectrum caused by the large, intensity dependent, effective mass of the
electrons within the laser beam. Emission rates acquire their global maximum at
this edge while neighbouring smaller peaks signal higher harmonics. In
addition, we find that the notion of the centre-of-mass frame for a given
harmonic becomes intensity dependent. Tuning the intensity then effectively
amounts to changing the frame of reference, going continuously from inverse to
ordinary Compton scattering with the centre-of-mass kinematics defining the
transition point between the two.Comment: 25 pages, 16 .eps figure
Pion-Nucleon Phase Shifts in Heavy Baryon Chiral Perturbation Theory
We calculate the phase shifts in the pion-nucleon scattering using the heavy
baryon formalism. We consider phase shifts for the pion energy range of 140 to
MeV. We employ two different methods for calculating the phase shifts -
the first using the full third order calculation of the pion-nucleon scattering
amplitude and the second by including the resonances and as
explicit degrees of freedom in the Lagrangian. We compare the results of the
two methods with phase shifts extracted from fits to the pion-nucleon
scattering data. We find good to fair agreement between the calculations and
the phase shifts from scattering data.Comment: 14 pages, Latex, 6figures. Revised version to appear in Phys.Rev.
Bose-Einstein condensation in variable dimensionality
We introduce dimensional perturbation techniques to Bose-Einstein
condensation of inhomogeneous alkali gases (BEC). The perturbation parameter is
delta=1/kappa, where kappa depends on the effective dimensionality of the
condensate and on the angular momentum quantum number. We derive a simple
approximation that is more accurate and flexible than the N -> infinity
Thomas-Fermi ground state approximation (TFA) of the Gross-Pitaevskii equation.
The approximation presented here is well-suited for calculating properties of
states in three dimensions and in low effective dimensionality, such as vortex
states in a highly anisotropic trap
Age-specific vaccine effectiveness of seasonal 2010/2011 and pandemic influenza A(H1N1) 2009 vaccines in preventing influenza in the United Kingdom
An analysis was undertaken to measure age-specific vaccine effectiveness (VE) of 2010/11 trivalent seasonal influenza vaccine (TIV) and monovalent 2009 pandemic influenza vaccine (PIV) administered in 2009/2010. The test-negative case-control study design was employed based on patients consulting primary care. Overall TIV effectiveness, adjusted for age and month, against confirmed influenza A(H1N1)pdm 2009 infection was 56% (95% CI 42–66); age-specific adjusted VE was 87% (95% CI 45–97) in <5-year-olds and 84% (95% CI 27–97) in 5- to 14-year-olds. Adjusted VE for PIV was only 28% (95% CI x6 to 51) overall and 72% (95% CI 15–91) in <5-year-olds. For confirmed influenza B infection, TIV effectiveness was 57% (95% CI 42–68) and in 5- to 14-year-olds 75% (95% CI 32–91). TIV provided moderate protection against the main circulating strains in 2010/2011, with higher protection in children. PIV administered during the previous season provided residual protection after 1 year, particularly in the <5 years age group
Chemoselective oxidation of aryl organoboron systems enabled by boronic acid-selective phase transfer
We report the direct chemoselective Brown-type oxidation of aryl organoboron systems containing two oxidizable boron groups. Basic biphasic reaction conditions enable selective formation and phase transfer of a boronic acid trihydroxyboronate in the presence of boronic acid pinacol (BPin) esters, while avoiding speciation equilibria. Spectroscopic investigations validate a base-promoted phase-selective discrimination of organoboron species. This phenomenon is general across a broad range of organoboron compounds and can also be used to invert conventional protecting group strategies, enabling chemoselective oxidation of BMIDA species over normally more reactive BPin substrates. We also demonstrate the selective oxidation of diboronic acid systems with chemoselectivity predictable a priori. The utility of this method is exemplified through the development of a chemoselective oxidative nucleophile coupling
First Fruits of the Spitzer Space Telescope: Galactic and Solar System Studies
This article provides a brief overview of the Spitzer Space Telescope and
discusses its initial scientific results on galactic and solar system science.Comment: Review article to appear in slightly different format in Vol.44 of
Annual Reviews of Astronomy and Astrophysics, 200
- …