59 research outputs found

    New mineralogical data on platinum-group minerals from the Río Santiago alluvial placer, Esmeraldasprovince, Ecuador

    Get PDF
    Mineralogical studies on platinum-group minerals found in placer deposits from the Río Santiago (Ecuador) are scarce. In this investigation, one sample collected from the Río Santiago alluvial placer was studied via a multi-disciplinary approach, including optical microscopy, scanning electron microscopy, electron microprobe, and Raman spectroscopy. Whole-rock geochemistry data of the sample confirms elevated Au and platinum-group elements contents and the chondrite-normalized pattern reveals pronounced positive Ir and Pt nomalies. Free grains of platinum-group minerals were separated via hydroseparation techniques and identified as: i) Pt-Fe alloy (Pt3Fe), ii) tulameenite (Pt2FeCu) and iii) hongshiite (PtCu). The most abundant platinum-group mineral is Pt-Fe alloy (85%) that occasionally hosts cuprorhodsite (CuRh2S4) inclusions. Although the primary source remains unknown, the geochemical and mineralogical data suggests that the source of platinum-group minerals in the Río Santiago alluvial placer is a mafic-ultramafic Ural-Alaska type complex. Possible primary sources are the mafic and ultramafic rocks found in the mafic basement of the coastal region and the Western Cordillera (Piñón, San Juan and Pallatanga units), which derive from the Late Cretaceous Caribbean Colombia Oceanic Plateau (CCOP)

    Micro-Raman spectroscopy of garnierite minerals: a useful method for phase identification

    Get PDF
    Garnierites are important Ni-Ores found in worldwide hydrous silicate-type Ni-laterites

    The supergene origin of ruthenian hexaferrum in Ni-laterites

    Get PDF
    For two decades, the nature of Fe-rich, oxygen-bearing, Ru-Os compounds found in the supergene environment has been debated. Ru-Os-Fe-oxides and nano-intergrowths of ruthenium with magnetite have been proposed. We applied FE-SEM, EMPA, mu-Raman spectroscopy and synchrotron tts-lXRD to Ru-Os-Fe compounds recovered from Ni-laterites from the Dominican Republic. The results demonstrate that a significant portion of Fe exists in a common structure with the Ru-Os alloy, that is, ruthenian hexaferrum. This mineral occurs both as nanoparticles and as micrometric patches within a matrix of Fe-oxide(s). Our data suggest that supergene ruthenian hexaferrum with a (Ru-0.4(Os, Ir)(0.1)Fe-0.5)(Sigma 1.0) stoichiometry represents the most advanced weathering product of primary laurite within Ni-laterites from the Dominican Republic

    Geochemistry of Platinum-Group Elements (PGE) in Cerro Matoso and Planeta Rica Ni-Laterite deposits, Northern Colombia

    Get PDF
    Platinum-group elements (PGE) are included among the so-called critical metals, and are essential metals for the technological industry. However, there are very few deposits in the world from which these metals can be extracted. The present work investigates three Ni-laterite profiles (hydrous Mg silicate type) formed over the ultramafic rocks of Cerro Matoso and Planeta Rica in Colombia. The main goal is to determine their PGE concentration and distribution, as well as to identify the carrier phases of these noble metals. The highest PGE contents in Cerro Matoso and Planeta Rica are concentrated in the limonite horizon (141-272 ppb), showing a strong decrease towards the saprolite and the underlying serpentinized peridotite (parent rock; Ru>Pd and the lowest to Rh<Os<Ir. Such distribution indicates that PGE are mobilized in different proportions by the laterization processes. The high affinity between PGE and Fe favors the formation of PGE-Fe mineral alloys such as the Pt-Ir-Fe-Ni minerals hosted by Fe-oxyhydroxide found in the limonite-saprolite transition zone in Planeta Rica. In addition, in the same zone, nanoparticles of Pt (< 1 μm) were found within framboidal pyrite. Both types of platinum group minerals (PGM) are secondary in origin. In the case of Pt-Ir-Fe-Ni alloys, this interpretation is supported by their morphology and chemical composition, which is comparable with PGE-Fe-Ni alloys found in laterites of Dominican Republic. In the case of Pt nanoparticle, textural relations suggest the neoformation of PGM adhered to the porous edges of altered pyrite. Cerro Matoso and Planeta Rica should be considered as unconventional PGE deposits, if adequate recovery processes can be applied for their recovery as by-products during Ni (+Co) production

    Crystallographic information data of natural occurring zaccariniite (RhNiAs) obtained by means of precession electron diffraction

    Get PDF
    The crystal structure of naturally occurring zaccariniite (RhNiAs) has been studied in Transmission Electron Microscopy (TEM) with variable angle Precession Electron Diffraction (PED) techniques. The analysis of the data has yielded tetragonal cell parameters of 3.86, 3.86, 6.77 Å and space group of P4/nmm for the basic structure, and its constituent atom positions for Ni, As and Rh were determined as well by ab-initio structure resolution method. The data is related to "Structural characterization and ab-initio resolution of natural occurring zaccariniite (RhNiAs) by means of Precession Electron Diffraction" (Roqué Rosell et al., 2019)

    Supergene neoformation of Pt-Ir-Fe-Ni alloys: multistage grains explains nugget formation in Ni-laterites

    Get PDF
    Ni-laterites from the Dominican Republic host rare but extremely platinum-group element (PGE)-rich chromitites (up to 17.5 ppm) without economic significance. These chromitites occur either included in saprolite (beneath the Mg discontinuity) or as 'floating chromitites' within limonite (above the Mg discontinuity). Both chromitite types have similar iridium-group PGE (IPGE)-enriched chondrite normalized patterns; however, chromitites included in limonite show a pronounced positive Pt anomaly. Investigation of heavy mineral concentrates, obtained via hydroseparation techniques, led to the discovery of multistage PGE grains: (i) Os-Ru-Fe-(Ir) grains of porous appearance are overgrown by (ii) Ni-Fe-Ir and Ir-Fe-Ni-(Pt) phases which are overgrown by (iii) Pt-Ir-Fe-Ni mineral phases. Whereas Ir-dominated overgrowths prevail in chromitites from the saprolite, Pt-dominated overgrowths are observed within floating chromitites. The following formation model for multistage PGE grains is discussed: (i) hypogene platinum-group minerals (PGM) (e.g. laurite) are transformed to secondary PGM by desulphurization during serpentinization; (ii) at the stages of serpentinization and/or at the early stages of lateritization, Ir is mobilized and recrystallizes on porous surfaces of secondary PGM (serving as a natural catalyst) and (iii) at the late stages of lateritization, biogenic mediated neoformation (and accumulation) of Pt-Ir-Fe-Ni nanoparticles occurs. The evidence presented in this work demonstrates that in situ growth of Pt-Ir-Fe-Ni alloy nuggets of isometric symmetry is possible within Ni-laterites from the Dominican Republic

    Secondary REE-minerals in the karst bauxites of the Bahoruco Peninsula (Dominican Republic)

    Full text link
    Rare earth elements (REE) are essential for numerous technological applications. Currently about 90% of the worldwide REE demand is supplied by China (Hatch, 2012), and therefore REE are defined as critical metals (Dutta et al., 2016). Bauxites, the main source for Al in the world, gained interest since they are capable of concentrating significant amounts of REE (Liu et al., 2016), and have been recently considered unconventional deposits for REE (Goodenough et al., 2017). Two types of bauxitic deposits are defined: a) lateritic bauxites (formed after intense weathering of an Al-bearing protolith), and b) karst bauxites (of controversial origin, hosted in carbonaceous rocks). One hypothesis of karst bauxite formation suggests dissolution of the carbonates, whereas the other implies an external contribution of Al-bearing minerals during or after carbonate deposition (Bárdossy, 1982)

    Discovery of Ni-smectite rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of 'hybrid hydrous Mg silicate-clay silicate' type Ni-laterite

    Get PDF
    Hydrous Mg silicate-type Ni-laterite deposits, like those in the Falcondo district, Dominican Republic, are dominated by Ni-enriched serpentine and garnierite. Recently, abundant Ni-smectite in the saprolite zone have been discovered in Loma Ortega, one of the nine Ni-laterite deposits in Falcondo. A first detailed study on these Ni-smectites has been performed (μXRD, SEM, EPMA), in addition to a geochemical and mineralogical characterisation of the Loma Ortega profile (XRF, ICP-MS, XRD). Unlike other smectite occurrences in laterite profiles worldwide, the Loma Ortega smectites are trioctahedral and exhibit high Ni contents never reported before. These Ni-smectites may be formed from weathering of pyroxene and olivine, and their composition can be explained by the mineralogy and the composition of the Al-depleted, olivine-rich parent ultramafic rock. Our study shows that Ni-laterites are mineralogically complex, and that a hydrous Mg silicate ore and a clay silicate ore can be confined to the same horizon in the weathering profile, which has significant implications from a recovery perspective. In accordance, the classification of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite deposit for Loma Ortega would be more appropriate

    REE ultra-rich karst bauxite deposits in the Pedernales Peninsula, Dominican Republic: Mineralogy of REE phosphates and carbonates

    Full text link
    Karst bauxites have recently received renewed attention for their potential as non-conventional REE sources. Karst bauxites from the Pedernales Peninsula in the Dominican Republic stand among the world's richest in REE. Bauxite ore from two deposits from this bauxite district, Aceitillar and El Turco, have been selected for this study due to their outstanding REE contents and contrasting mineralogy. REE (La to Lu) contents in Aceitillar, range from 0.07 to 0.16 wt%, and Y from 0.01 to 0.13 wt%, whereas El Turco contains between 0.28 and 1.40 wt% REE, and 0.33 to 1.48 wt% Y. The characterisation of REE mineralisation was performed through powder and monocrystal XRD, SEM-EDS, and EMP analyses. REE phosphates and carbonates reveal textural features that suggest significant REE mobilisation and re-deposition within the bauxite profile. The identified REE minerals can be classified into: i) primary monazite(-Ce) and minor monazite(-La); ii) secondary Y- and Nd-dominant phosphates; and iii) secondary Gd- and Nd-carbonates of the (hydroxyl)bastnäsite group. While monazites are ubiquitous in the two studied deposits, secondary phosphates are predominant in El Turco while secondary carbonates are exclusive of Aceitillar. This contrasting mineralogy is explained by the total concentration of carbonate and/or phosphate in the karst bauxite groundwater solutions. REE phosphates are the most stable phases at [CO32−]total/[PO43−]total ≤ 2; whereas REE carbonates are stable at near neutral pH when the total aqueous carbonate concentration is two orders of magnitude higher than that of phosphate. Results of this investigation contribute to a better understanding of the formation REE minerals in the supergene environment and can be applied in REE separation methods

    Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic

    Get PDF
    Bauxite deposits, traditionally the main source of 'aluminum, have been recently targeted for their remarkable contents in rare earth elements (REE). With Sigma REE (lanthanoids + Sc + Y) concentrations systematically higher than similar to 1400 ppm (ay. = 1530 ppm), the Las Mercedes karstic bauxites in the Dominican Republic rank as one of the REE-richest deposits of its style.The bauxitic ore in the Las Mercedes deposit is mostly unlithified and has a homogeneous-massive lithostructure, with only local cross-stratification and graded bedding. The dominant arenaceous and round-grained texture is composed of bauxite particles and subordinate ooids, pisoids and carbonate clasts. Mineralogically, the bauxite ore is composed mostly of gibbsite and lesser amounts of kaolinite, hematite, boehmite, anatase, goethite, chromian spinel and zircon. Identified REE-minerals include cerianite and monazite-Ce, whose composition accounts for the steady enrichment in light-relative to medium-and heavy-REE of the studied bauxites.Considering the paleo-geomorphology of the study area, we propose that bauxites in the Las Mercedes deposit are the product of the erosion and deposition of lithified bauxites located at higher elevations in the Bahoruco ranges. Based on the available data, we suggest a mixed lithological source for the bauxite deposits at the district scale: bedrock carbonates and an igneous source of likely mafic composition. (C) 2017 Elsevier B.V. All rights reserved
    corecore