120 research outputs found

    Self-injection threshold in self-guided laser wakefield accelerators

    Get PDF
    A laser pulse traveling through a plasma can excite large amplitude plasma waves that can be used to accelerate relativistic electron beams in a very short distance—a technique called laser wakefield acceleration. Many wakefield acceleration experiments rely on the process of wave breaking, or self-injection, to inject electrons into the wave, while other injection techniques rely on operation without self-injection. We present an experimental study into the parameters, including the pulse energy, focal spot quality, and pulse power, that determine whether or not a wakefield accelerator will self-inject. By taking into account the processes of self-focusing and pulse compression we are able to extend a previously described theoretical model, where the minimum bubble size k p r b required for trapping is not constant but varies slowly with density and find excellent agreement with this model

    Generation and acceleration of electron bunches from a plasma photocathode

    Get PDF
    Plasma waves generated in the wake of intense, relativistic laser1,2 or particle beams3,4 can accelerate electron bunches to gigaelectronvolt energies in centimetre-scale distances. This allows the realization of compact accelerators with emerging applications ranging from modern light sources such as the free-electron laser to energy frontier lepton colliders. In a plasma wakefield accelerator, such multi-gigavolt-per-metre wakefields can accelerate witness electron bunches that are either externally injected5,6 or captured from the background plasma7,8. Here we demonstrate optically triggered injection9–11 and acceleration of electron bunches, generated in a multi-component hydrogen and helium plasma employing a spatially aligned and synchronized laser pulse. This ‘plasma photocathode’ decouples injection from wake excitation by liberating tunnel-ionized helium electrons directly inside the plasma cavity, where these cold electrons are then rapidly boosted to relativistic velocities. The injection regime can be accessed via optical11 density down-ramp injection12–16 and is an important step towards the generation of electron beams with unprecedented low transverse emittance, high current and 6D-brightness17. This experimental path opens numerous prospects for transformative plasma wakefield accelerator applications based on ultrahigh-brightness beams

    Rapid self-magnetization of laser speckles in plasmas by nonlinear anisotropic instability

    No full text
    Presented here are the first kinetic two-dimensional Vlasov- Fokker-Planck calculations of inertial confinement fusion-related laser-plasma interactions, to include self-consistent magnetic fields, hydrodynamic plasma expansion and anisotropic electron pressure. An underdense plasma, reminiscent of the gas fill of a hohlraum, is heated by a laser speckle with Iλ2 = 1.0 x 1015 W cm-2μm2 and radius w0 = 5 μm. Inverse bremsstrahlung absorption of the laser and non-local electron transport lead to the development of a collisional analogue of the Weibel electromagnetic instability. The instability is seeded by magnetic fields, generated in an initial period of linear growth due to the anisotropic electron distribution arising in a laser speckle. Using the circular polarization does not generate significant fields. For linear polarization, the field generally saturates when the magnetization is ωτei > 1, and the effective growth rate is similar to the coherence time of typical laser speckles. The presence of these magnetic fluctuations significantly affects the heat fluxes and hydrodynamics in the plasma. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
    • …
    corecore