2,418 research outputs found

    Timing analysis of low-energy gamma ray emission from galactic compact objects using the Gamma Ray Observatory

    Get PDF
    The principal goal of our phase 1 investigation was the development of techniques and data analysis tools for pulsar searches and timing. After the launch of the Compton Observatory, we received from the Burst and Transient Source Experiment (BATSE) team one day of discriminator large area (DISCLA) data for use in the development and testing of data analysis techniques. Using this first day of data for testing and optimizing our timing tools we detected four x-ray binary pulsars, Vela X-1, Cen X-3, 4U 0115+63, and GX 301-2. Subsequently, we received four more days of data, allowing us to test our timing tools with data from a variety of days. In summary, using the tools we developed based on the first day of data that we received, we have detected 8 pulsars in 5 days of data, or roughly one quarter of the approximately 30 known x-ray binary pulsars. In addition to the pulsars listed above, we detected GX 1+4, 4U 1626-67, OAO 1657-415, and Her X-1. Many of the data analysis tools that we developed have been ported to MSFC and are being used for the analysis of BATSE data. This appendix describes some of the timing tools and presents preliminary pulse period and phase profile results

    XSIL: Extensible Scientific Interchange Language

    Get PDF
    We motivate and define the XSIL language as a flexible, hierarchical, extensible transport language for scientific data objects. The entire object may be represented in the file, or there may be metadata in the XSIL file, with a powerful, fault-tolerant linking mechanism to external data. The language is based on XML, and is designed not only for parsing and processing by machines, but also for presentation to humans through web browsers and web-database technology. There is a natural mapping between the elements of the XSIL language and the object model into which they are translated by the parser. As well as common objects (Parameter, Array, Time, Table), we have extended XSIL to include the IGWDFrame, used by gravitational-wave observatories

    Research in cosmic and gamma ray astrophysics

    Get PDF
    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen

    A Laboratory Demonstration of High-Resolution Hard X-ray and Gamma-ray Imaging using Fourier-Transform Techniques

    Get PDF
    A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard x-ray and γ-ray imaging, with particular emphasis on possible applications to high-energy astronomy. We discuss considerations for the design of a Fourier-transform imager and describe the instrumentation used in the laboratory studies. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented

    Pulse Morphology of the Galactic Center Magnetar PSR J1745-2900

    Get PDF
    We present results from observations of the Galactic Center magnetar, PSR J1745-2900, at 2.3 and 8.4 GHz with the NASA Deep Space Network 70 m antenna, DSS-43. We study the magnetar's radio profile shape, flux density, radio spectrum, and single pulse behavior over a ~1 year period between MJDs 57233 and 57621. In particular, the magnetar exhibits a significantly negative average spectral index of ⟨α⟩\langle\alpha\rangle = -1.86 ±\pm 0.02 when the 8.4 GHz profile is single-peaked, which flattens considerably when the profile is double-peaked. We have carried out an analysis of single pulses at 8.4 GHz on MJD 57479 and find that giant pulses and pulses with multiple emission components are emitted during a significant number of rotations. The resulting single pulse flux density distribution is incompatible with a log-normal distribution. The typical pulse width of the components is ~1.8 ms, and the prevailing delay time between successive components is ~7.7 ms. Many of the single pulse emission components show significant frequency structure over bandwidths of ~100 MHz, which we believe is the first observation of such behavior from a radio magnetar. We report a characteristic single pulse broadening timescale of ⟨τd⟩\langle\tau_{d}\rangle = 6.9 ±\pm 0.2 ms at 8.4 GHz. We find that the pulse broadening is highly variable between emission components and cannot be explained by a thin scattering screen at distances ≳\gtrsim 1 kpc. We discuss possible intrinsic and extrinsic mechanisms for the magnetar's emission and compare our results to other magnetars, high magnetic field pulsars, and fast radio bursts.Comment: 18 pages, 12 figures, Accepted for publication in ApJ on 2018 August 30. v2: Updated to match published versio

    The National Virtual Observatory

    Get PDF
    As a scientific discipline, Astronomy is rather unique. We only have one laboratory, the Universe, and we cannot, of course, change the initial conditions and study the resulting effects. On top of this, acquiring Astronomical data has historically been a very labor-intensive effort. As a result, data has traditionally been preserved for posterity. With recent technological advances, however, the rate at which we acquire new data has grown exponentially, which has generated a Data Tsunami, whose wave train threatens to overwhelm the field. In this conference proceedings, we present and define the concept of virtual observatories, which we feel is the only logical answer to this dilemma.Comment: 5 pages, uses newpasp.sty (included), to appear in "Extragalactic Gas at Low Redshfit", ASP Conf. Series, J. S. Mulchaey and J. T. Stocke (eds.

    Constraints as a destriping tool for Hires images

    Get PDF
    Images produced from the Maximum Correlation Method sometimes suffer from visible striping artifacts, especially for areas of extended sources. Possible causes are different baseline levels and calibration errors in the detectors. We incorporated these factors into the MCM algorithm, and tested the effects of different constraints on the output image. The result shows significant visual improvement over the standard MCM Method. In some areas the new images show intelligible structures that are otherwise corrupted by striping artifacts, and the removal of these artifacts could enhance performance of object classification algorithms. The constraints were also tested on low surface brightness areas, and were found to be effective in reducing the noise level

    A Virtual Data Grid for LIGO

    Get PDF
    GriPhyN (Grid Physics Network) is a large US collaboration to build grid services for large physics experiments, one of which is LIGO, a gravitational-wave observatory. This paper explains the physics and computing challenges of LIGO, and the tools that GriPhyN will build to address them. A key component needed to implement the data pipeline is a virtual data service; a system to dynamically create data products requested during the various stages. The data could possibly be already processed in a certain way, it may be in a file on a storage system, it may be cached, or it may need to be created through computation. The full elaboration of this system will al-low complex data pipelines to be set up as virtual data objects, with existing data being transformed in diverse ways

    PSR J1024–0719: A Millisecond Pulsar in an Unusual Long-period Orbit

    Get PDF
    PSR J1024–0719 is a millisecond pulsar that was long thought to be isolated. However, puzzling results concerning its velocity, distance, and low rotational period derivative have led to a reexamination of its properties. We present updated radio timing observations along with new and archival optical data which show that PSR J1024–0719 is most likely in a long-period (2–20 kyr) binary system with a low-mass (≈0.4 M⊙), low-metallicity (z ≈ -0.9 dex) main-sequence star. Such a system can explain most of the anomalous properties of this pulsar. We suggest that this system formed through a dynamical exchange in a globular cluster that ejected it into a halo orbit, which is consistent with the low observed metallicity for the stellar companion. Further astrometric and radio timing observations such as measurement of the third period derivative could strongly constrain the range of orbital parameters
    • …
    corecore