18 research outputs found

    1918 Influenza Pandemic and Highly Conserved Viruses with Two Receptor-Binding Variants

    Get PDF
    The “Spanish influenza pandemic swept the globe in the autumn and winter of 1918–19, and resulted in the deaths of approximately 40 million people. Clinically, epidemiologically, and pathologically, the disease was remarkably uniform, which suggests that similar viruses were causing disease around the world. To assess the homogeneity of the 1918 pandemic influenza virus, partial hemagglutinin gene sequences have been determined for five cases, including two newly identified samples from London, United Kingdom. The strains show 98.9% to 99.8% nucleotide sequence identity. One of the few differences between the strains maps to the receptor-binding site of hemagglutinin, suggesting that two receptor-binding configurations were co-circulating during the pandemic. The results suggest that in the early stages of an influenza A pandemic, mutations that occur during replication do not become fixed so that a uniform “consensus” strain circulates for some time

    1917 Avian Influenza Virus Sequences Suggest that the 1918 Pandemic Virus Did Not Acquire Its Hemagglutinin Directly from Birds

    No full text
    Wild waterfowl captured between 1915 and 1919 were tested for influenza A virus RNA. One bird, captured in 1917, was infected with a virus of the same hemagglutinin (HA) subtype as that of the 1918 pandemic virus. The 1917 HA is more closely related to that of modern avian viruses than it is to that of the pandemic virus, suggesting (i) that there was little drift in avian sequences over the past 85 years and (ii) that the 1918 pandemic virus did not acquire its HA directly from a bird

    Reply to Wilson et al

    No full text

    Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus.

    No full text
    The Spanish influenza pandemic of 1918-1919 caused acute illness in 25-30% of the world's population and resulted in the death of 40 million people. The complete genomic sequence of the 1918 influenza virus will be deduced using fixed and frozen tissues of 1918 influenza victims. Sequence and phylogenetic analyses of the complete 1918 haemagglutinin (HA) and neuraminidase (NA) genes show them to be the most avian-like of mammalian sequences and support the hypothesis that the pandemic virus contained surface protein-encoding genes derived from an avian influenza strain and that the 1918 virus is very similar to the common ancestor of human and classical swine H1N1 influenza strains. Neither the 1918 HA genes nor the NA genes possessed mutations that are known to increase tissue tropicity, which accounts for the virulence of other influenza strains such as A/WSN/33 or fowl plague viruses. The complete sequence of the nonstructural (NS) gene segment of the 1918 virus was deduced and tested for the hypothesis that the enhanced virulence in 1918 could have been due to type I interferon inhibition by the NS1 protein. The results from these experiments were inconclusive. Sequence analysis of the 1918 pandemic influenza virus is allowing us to test hypotheses as to the origin and virulence of this strain. This information should help to elucidate how pandemic influenza strains emerge and what genetic features contribute to their virulence
    corecore