4,565 research outputs found

    Ticket Scalping: A New Look at an Old Problem

    Get PDF
    Social, economic and legal factors have contributed to the success of ticket scalpers. Recently enacted unfair trade practices laws now provide courts with the means to regulate scalping and to provide effective redress for aggrieved consumer

    Ticket Scalping: A New Look at an Old Problem

    Get PDF
    Social, economic and legal factors have contributed to the success of ticket scalpers. Recently enacted unfair trade practices laws now provide courts with the means to regulate scalping and to provide effective redress for aggrieved consumer

    Classifying continuous, real-time e-nose sensor data using a bio-inspired spiking network modelled on the insect olfactory system

    Get PDF
    In many application domains, conventional e-noses are frequently outperformed in both speed and accuracy by their biological counterparts. Exploring potential bio-inspired improvements, we note a number of neuronal network models have demonstrated some success in classifying static datasets by abstracting the insect olfactory system. However, these designs remain largely unproven in practical settings, where sensor data is real-time, continuous, potentially noisy, lacks a precise onset signal and accurate classification requires the inclusion of temporal aspects into the feature set. This investigation therefore seeks to inform and develop the potential and suitability of biomimetic classifiers for use with typical real-world sensor data. Taking a generic classifier design inspired by the inhibition and competition in the insect antennal lobe, we apply it to identifying 20 individual chemical odours from the timeseries of responses of metal oxide sensors. We show that four out of twelve available sensors and the first 30 s(10%) of the sensors’ continuous response are sufficient to deliver 92% accurate classification without access to an odour onset signal. In contrast to previous approaches, once training is complete, sensor signals can be fed continuously into the classifier without requiring discretization. We conclude that for continuous data there may be a conceptual advantage in using spiking networks, in particular where time is an essential component of computation. Classification was achieved in real time using a GPU-accelerated spiking neural network simulator developed in our group

    Annuities and Individual Welfare

    Get PDF
    This paper advances the theory of annuity demand. First, we derive sufficient conditions under which complete annuitization is optimal, showing that this well-known result holds true in a more general setting than in Yaari (1965). Specifically, when markets are complete, sufficient conditions need not impose exponential discounting, intertemporal separability or the expected utility axioms; nor need annuities be actuarially fair, nor longevity risk be the only source of consumption uncertainty. All that is required is that consumers have no bequest motive and that annuities pay a rate of return for survivors greater than those of otherwise matching conventional assets, net of administrative costs. Second, we show that full annuitization may not be optimal when markets are incomplete. Some annuitization is optimal as long as conventional asset markets are complete. The incompleteness of markets can lead to zero annuitization but the conditions on both annuity and bond markets are stringent. Third, we extend the simulation literature that calculates the utility gains from annuitization by considering consumers whose utility depends both on present consumption and a which they have become accustomed. The value of annuitization hinges critically on the size of the initial standard-of-living relative to wealth.

    Mutations in the E2 glycoprotein and the 3\u27 untranslated region enhance chikungunya virus virulence in mice

    Get PDF
    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes debilitating musculoskeletal pain and inflammation and can persist for months to years after acute infection. Although studies of humans and experimentally infected animals suggest that CHIKV infection persists in musculoskeletal tissues, the mechanisms for this remain poorly understood. To evaluate this further, we isolated CHIKV from the serum of persistently infected Rag1 -/- mice at day 28. When inoculated into naive wild-type (WT) mice, this persistently circulating CHIKV strain displayed a capacity for earlier dissemination and greater pathogenicity than the parental virus. Sequence analysis revealed a nonsynonymous mutation in the E2 glycoprotein (E2 K200R) and a deletion within the 3' untranslated region (3'-UTR). The introduction of these changes into the parental virus conferred enhanced virulence in mice, although primary tropism for musculoskeletal tissues was maintained. The E2 K200R mutation was largely responsible for enhanced viral dissemination and pathogenicity, although these effects were augmented by the 3'- UTR deletion. Finally, studies with Irf3/Irf7 -/- and Ifnar1 -/- mice suggest that the E2 K200R mutation enhances viral dissemination from the site of inoculation independently of interferon regulatory factor 3 (IRF3)-, IRF7-, and IFNAR1-mediated responses. As our findings reveal viral determinants of CHIKV dissemination and pathogenicity, their further study should help to elucidate host-virus interactions that determine acute and chronic CHIKV infection

    SDSS IV MaNGA - Rotation Velocity Lags in the Extraplanar Ionized Gas from MaNGA Observations of Edge-on Galaxies

    Get PDF
    We present a study of the kinematics of the extraplanar ionized gas around several dozen galaxies observed by the Mapping of Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We considered a sample of 67 edge-on galaxies out of more than 1400 extragalactic targets observed by MaNGA, in which we found 25 galaxies (or 37%) with regular lagging of the rotation curve at large distances from the galactic midplane. We model the observed HαH\alpha emission velocity fields in the galaxies, taking projection effects and a simple model for the dust extinction into the account. We show that the vertical lag of the rotation curve is necessary in the modeling, and estimate the lag amplitude in the galaxies. We find no correlation between the lag and the star formation rate in the galaxies. At the same time, we report a correlation between the lag and the galactic stellar mass, central stellar velocity dispersion, and axial ratio of the light distribution. These correlations suggest a possible higher ratio of infalling-to-local gas in early-type disk galaxies or a connection between lags and the possible presence of hot gaseous halos, which may be more prevalent in more massive galaxies. These results again demonstrate that observations of extraplanar gas can serve as a potential probe for accretion of gas.Comment: 13 pages, 11 figures, accepted for publication in Ap

    Presentation and Outcomes After Medical and Surgical Treatment Versus Medical Treatment Alone of Spontaneous Infectious Spondylodiscitis: A Systematic Literature Review and Meta-Analysis.

    Get PDF
    Study Design: Systematic literature review. Objectives: The aims of this study were to (1) describe the clinical features, disabilities, and incidence of neurologic deficits of pyogenic spondylodiscitis prior to treatment and (2) compare the functional outcomes between patients who underwent medical treatment alone or in combination with surgery for pyogenic spondylodiscitis. Methods: A systematic literature review was performed using PubMed according to PRISMA guidelines. No year restriction was put in place. Statistical analysis of pooled data, when documented in the original report (ie, number of patients with desired variable and number of patients evaluated), was conducted to determine the most common presenting symptoms, incidence of pre- and postoperative neurologic deficits, associated comorbidities, infectious pathogens, approach for surgery when performed, and duration of hospitalization. Outcomes data, including return to work status, resolution of back pain, and functional recovery were also pooled among all studies and surgery-specific studies alone. Meta-analysis of studies with subgroup analysis of pain-free outcome in surgical and medical patients was performed. Results: Fifty of 1286 studies were included, comprising 4173 patients undergoing either medical treatment alone or in combination with surgery. Back pain was the most common presenting symptom, reported in 91% of patients. Neurologic deficit was noted in 31% of patients. Conclusion: Medical management remains first-line treatment of infectious pyogenic spondylodiscitis. Surgery may be indicated for progressive pain, persistent infection on imaging, deformity or neurologic deficits. If surgery is required, reported literature shows potential for significant pain reduction, improved neurologic function and a high number of patients returning to a normal functional/work status

    Spatial effects on species persistence and implications for biodiversity

    Get PDF
    Natural ecosystems are characterized by striking diversity of form and functions and yet exhibit deep symmetries emerging across scales of space, time and organizational complexity. Species-area relationships and species-abundance distributions are examples of emerging patterns irrespective of the details of the underlying ecosystem functions. Here we present empirical and theoretical evidence for a new macroecological pattern related to the distributions of local species persistence times, defined as the timespans between local colonizations and extinctions in a given geographic region. Empirical distributions pertaining to two different taxa, breeding birds and herbaceous plants, analyzed in a new framework that accounts for the finiteness of the observational period, exhibit power-law scaling limited by a cut-off determined by the rate of emergence of new species. In spite of the differences between taxa and spatial scales of analysis, the scaling exponents are statistically indistinguishable from each other and significantly different from those predicted by existing models. We theoretically investigate how the scaling features depend on the structure of the spatial interaction network and show that the empirical scaling exponents are reproduced once a two-dimensional isotropic texture is used, regardless of the details of the ecological interactions. The framework developed here also allows to link the cut-off timescale with the spatial scale of analysis, and the persistence-time distribution to the species-area relationship. We conclude that the inherent coherence obtained between spatial and temporal macroecological patterns points at a seemingly general feature of the dynamical evolution of ecosystems.Comment: 5 pages, 5 figures. Supplementary materials avaliable on http://www.pnas.org/content/108/11/434
    • …
    corecore