2,404 research outputs found

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 9: Summary report to phase 3 faculty and student respondents including frequency distributions

    Get PDF
    This project is designed to explore the diffusion of scientific and technical information (STI) throughout the aerospace industry. The increased international competition and cooperation in the industry promises to significantly affect the STI standards of U.S. aerospace engineers and scientists. Therefore, it is important to understand the aerospace knowledge diffusion process itself and its implications at the individual, organizational, national, and international levels. Examined here is the role of STI in the academic aerospace community

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 10: Summary report to phase 3 academic library respondents including frequency distributions

    Get PDF
    Phase 3 of a 4 part study was undertaken to study the use of scientific and technical information (STI) in the academic aerospace community. Phase 3 of this project used three questionnaires that were sent to three groups (i.e., faculty, librarians, and students) in the academic aerospace community. Specific attention was paid to the types of STI used and the methods in which academic users acquire STI. The responses of the academic libraries are focussed on herein. Demographic information on academic aerospace libraries is provided. Data regarding NASA interaction with academic aerospace libraries is also included, as is the survey instrument

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    Get PDF
    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases

    [NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 5:] Summary report to phase 1 respondents including frequency distributions

    Get PDF
    Phase 1 of a four part study was undertaken to investigate the use of scientific and technical information (STI) by U.S. aerospace engineers and scientists. Specific attention was paid to institutional and sociometric variables and to the step-by-step process of information gathering used by the respondents. Data were collected by means of three self-administered mail-back questionnaires. The approximately 34,000 members of the American Institute of Aeronautics and Astronautics served as the study population. More than 65 percent of the randomly selected respondants returned the questionnaires in each of the three groups. Respondants relied more heavily on informal sources of information than formal sources and turned to librarians and other technical information specialists only when they did not obtain results via informal means or their own formal searches. The report includes frequency distributions for the questions

    The elimination of surface cross-hatch from relaxed, limited-area Si1 – xGex buffer layers

    Get PDF
    The influence of lateral dimensions on the relaxation and surface topography of linearly graded Si1 – xGex buffer layers has been investigated. A dramatic change in the relaxation mechanism has been observed for depositions on Si mesa pillars of lateral dimensions 10 µm and below. Misfit dislocations are able to extend unhindered and terminate at the edges of the growth zone, yielding a surface free of cross-hatch. For lateral dimensions in excess of 10 µm orthogonal misfit interactions occur and relaxation is dominated by the modified Frank–Read (MFR) mechanism. The stress fields associated with the MFR dislocation pile-ups result in a pronounced cross-hatch topography

    Seasonal Variations In Nutrient Concentrations and Speciation in the Chena River, Alaska

    Get PDF
    To better understand the seasonal controls on nutrient abundances, speciation, and fluxes in a watershed underlain by discontinuous permafrost, we collected water samples biweekly from the Chena River during 2005-2006 to measure inorganic and organic N, P, and Si in dissolved and particulate phases. Nitrate concentrations were low (8-14 mu M) during the winter and summer dry seasons but were elevated during the spring freshet (15-24 mu M). Ammonium varied from 8 to 13 mu M during the winter but dropped dramatically during the ice-open season to 0.1-3 mM. Phosphate was very low throughout the year (ranging from 0.03 to 0.3 mu M), reflecting the pristine condition of the watershed. Dissolved silica was high in the winter and reached its minimum during the spring freshet. DIN was the dominant species in the total N pool (60%), followed by DON (30%) and PN (10%). Most of the phosphorous was present in the particulate phase (74%), with phosphate and DOP only comprising 19% and 7%, respectively. Seasonal variations in nutrient concentrations and speciation were mostly controlled by the hydrological flow regime and biological activity in the river. Annual nutrient export fluxes from the Chena River during 2005-2006 were 51.1 x 10(6) mole-N, 1.4 x 10(6) mole-P, and 197 x 10(6) mole-Si, corresponding to an annual yield of 9.8 x 10(3) mol-N km(-2), 0.28 x 10(3) mol-P km(-2), and 37.9 x 10(3) mol-Si km(-2), respectively. Within the annual export fluxes, the spring freshet contributed about 18% of TN, 27% of TP, and 10% of Si, while the winter season contributed 11% of TN, 12% of TP, and 20% of Si. Continued climatic warming in northern watersheds will likely increase the export of nutrient species from watersheds

    Simulation and observations of stratospheric aerosols from the 2009 Sarychev volcanic eruption

    Get PDF
    We used a general circulation model of Earth’s climate to conduct simulations of the 12-16 June 2009 eruption of Sarychev volcano (48.1°N, 153.2°E). The model simulates the formation and transport of the stratospheric sulfate aerosol cloud from the eruption and the resulting climate response. We compared optical depth results from these simulations with limb scatter measurements from the Optical Spectrograph and InfraRed Imaging System (OSIRIS), in situ measurements from balloon-borne instruments lofted from Laramie, Wyoming (41.3°N, 105.7°W), and five lidar stations located throughout the Northern Hemisphere. The aerosol cloud covered most of the Northern Hemisphere, extending slightly into the tropics, with peak backscatter measured between 12 and 16 km in altitude. Aerosol concentrations returned to near background levels by Spring, 2010. After accounting for expected sources of discrepancy between each of the data sources, the magnitudes and spatial distributions of aerosol optical depth due to the eruption largely agree. In conducting the simulations, we likely overestimated both particle size and the amount of SO2 injected into the stratosphere, resulting in modeled optical depth values that were a factor of 2-4 too high. Model results of optical depth due to the eruption show a peak too late in high latitudes and too early in low latitudes, suggesting a problem with stratospheric circulation in the model. The model also shows a higher annual decay rate in optical depth than is observed, showing an inaccuracy in seasonal deposition rates. The modeled deposition rate of sulfate aerosols from the Sarychev eruption is higher than the rate calculated for aerosols from the 1991 eruption of Mt. Pinatubo

    Keys to Profitable Southern Pea Production.

    Get PDF
    4 p

    Use of dye to distinguish salt and protein crystals under microcrystallization conditions

    Get PDF
    An improved method of screening crystal growth conditions is provided wherein molecules are crystallized from solutions containing dyes. These dyes are selectively incorporated or associated with crystals of particular character thereby rendering crystals of particular character colored and improving detection of the dyed crystals. A preferred method involves use of dyes in protein solutions overlayed by oil. Use of oil allows the use of small volumes of solution and facilitates the screening of large numbers of crystallization conditions in arrays using automated devices that dispense appropriate solutions to generate crystallization trials, overlay crystallization trials with an oil, provide appropriate conditions conducive to crystallization and enhance detection of dyed (colored) or undyed (uncolored) crystals that result
    • …
    corecore