18,159 research outputs found

    THE CHANGING NATURE OF RURAL COMMUNITIES

    Get PDF
    Community/Rural/Urban Development,

    Mammals of Iowa

    Get PDF

    Effects of Ponderosa Pine Ecological Restoration on Forest Soils and Understory Vegetation in Northern Arizona

    Get PDF
    The human exclusion of wildfire and overgrazing by livestock since settlement have caused dramatic changes in ponderosa pine (Pinus ponderosa Dougl ex Laws) forest ecosystems. These changes include increased numbers of tree stems, reduced understory cover and diversity, and the introduction of invasive, non-native understory species. This study evaluated the coverage and species composition of understory vegetation present in the “cool-season” (late spring and early summer) in a ponderosa pine forest on grazed and ungrazed plots that had undergone restoration treatments on three different soil/geologic parent material types near Flagstaff, Arizona, twelve years after tree thinning and grazing exclosure treatments were applied. Several measured soil properties, such as soil respiration and temperature, were also evaluated in this study. Species richness of “cool-season” vegetation was influenced more by grazing practices than restoration treatments. Differences could be less or greater when vegetation that is active later in the season is measured. Vegetative cover was significantly influenced by restoration treatments (9.3% cover under open canopies and 6.5% under dense canopies), probably due to differences in competition for light and other resources (i.e. soil moisture and nutrients). Unlike finding by Abella et al. (2015), who studied “warm-season” vegetation, “cool-season” understory cover was not influenced by soil parent material type in this study, which might suggest that differences in understory cover due to soil properties are only seen shortly after restoration treatments are applied, or the time of year vegetation is evaluated may play a role in the differences seen. Soil respiration was highest on limestone soil parent material type (3.3 g C-CO2 m-2 day-1), and soil temperature was lowest under closed canopy treatments (15°C)

    Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes.

    Get PDF
    Transcripts for P2X(2) and P2X(6) subunits are present in rat CNS and frequently colocalize in the same brainstem nuclei. When rat P2X(2) (rP2X(2)) and rat P2X(6) (rP2X(6)) receptors were expressed individually in Xenopus oocytes and studied under voltage-clamp conditions, only homomeric rP2X(2) receptors were fully functional and gave rise to large inward currents (2-3 microA) to extracellular ATP. Coexpression of rP2X(2) and rP2X(6) subunits in Xenopus oocytes resulted in a heteromeric rP2X(2/6) receptor, which showed a significantly different phenotype from the wild-type rP2X(2) receptor. Differences included reduction in agonist potencies and, in some cases (e.g., Ap(4)A), significant loss of agonist activity. ATP-evoked inward currents were biphasic at the heteromeric rP2X(2/6) receptor, particularly when Zn(2+) ions were present or extracellular pH was lowered. The pH range was narrower for H(+) enhancement of ATP responses at the heteromeric rP2X(2/6) receptor. Also, H(+) ions inhibited ATP responses at low pH levels (<pH 6.3). The pH-dependent blocking activity of suramin was changed at this heteromeric receptor, although the potentiating effect of Zn(2+) on ATP responses was unchanged. Thus, the rP2X(2/6) receptor is a functionally modified P2X(2)-like receptor with a distinct pattern of pH modulation of ATP activation and suramin blockade. Although homomeric P2X(6) receptors function poorly, the P2X(6) subunit can contribute to functional heteromeric P2X channels and may influence the phenotype of native P2X receptors in those cells in which it is expressed

    Spitzer Phase Curves of KELT-1b and the Signatures of Nightside Clouds in Thermal Phase Observations

    Full text link
    We observed two full orbital phase curves of the transiting brown dwarf KELT-1b, at 3.6um and 4.5um, using the Spitzer Space Telescope. Combined with previous eclipse data from Beatty et al. (2014), we strongly detect KELT-1b's phase variation as a single sinusoid in both bands, with amplitudes of 964±36964\pm36 ppm at 3.6um and 979±54979\pm54 ppm at 4.5um, and confirm the secondary eclipse depths measured by Beatty et al. (2014). We also measure noticeable Eastward hotspot offsets of 28.4±3.528.4\pm3.5 degrees at 3.6um and 18.6±5.218.6\pm5.2 degrees at 4.5um. Both the day-night temperature contrasts and the hotspot offsets we measure are in line with the trends seen in hot Jupiters (e.g., Crossfield 2015), though we disagree with the recent suggestion of an offset trend by Zhang et al. (2018). Using an ensemble analysis of Spitzer phase curves, we argue that nightside clouds are playing a noticeable role in modulating the thermal emission from these objects, based on: 1) the lack of a clear trend in phase offsets with equilibrium temperature, 2) the sharp day-night transitions required to have non-negative intensity maps, which also resolves the inversion issues raised by Keating & Cowan (2017), 3) the fact that all the nightsides of these objects appear to be at roughly the same temperature of 1000K, while the dayside temperatures increase linearly with equilibrium temperature, and 4) the trajectories of these objects on a Spitzer color-magnitude diagram, which suggest colors only explainable via nightside clouds.Comment: AJ in press. Updated to reflect the accepted versio
    • …
    corecore