1,890 research outputs found

    Najas guadalupensis (Spreng.) Magnus

    Get PDF
    https://thekeep.eiu.edu/herbarium_specimens_byname/21553/thumbnail.jp

    Atmospheric extinction coefficients in the Ic\mathrm{I_c} band for several major international observatories: Results from the BiSON telescopes, 1984 to 2016

    Get PDF
    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory (LCO), Chile; Observatorio del Teide, Iza\~{n}a, Tenerife, Canary Islands; the South African Astronomical Observatory (SAAO), Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the Ic\mathrm{I_c} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984 to 2016.Comment: 15 pages, 10 figures, 4 tables. Accepted by Astronomical Journal: 2017 July 2

    Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the Diabetic Retinopathy Screening Service for Wales: retrospective analysis

    Get PDF
    Objectives To determine the incidence of any and referable diabetic retinopathy in people with type 2 diabetes mellitus attending an annual screening service for retinopathy and whose first screening episode indicated no evidence of retinopathy

    On the Mechanism of Time--Delayed Feedback Control

    Full text link
    The Pyragas method for controlling chaos is investigated in detail from the experimental as well as theoretical point of view. We show by an analytical stability analysis that the revolution around an unstable periodic orbit governs the success of the control scheme. Our predictions concerning the transient behaviour of the control signal are confirmed by numerical simulations and an electronic circuit experiment.Comment: 4 pages, REVTeX, 4 eps-figures included Phys. Rev. Lett., in press also available at http://athene.fkp.physik.th-darmstadt.de/public/wolfram.htm

    Visualizing Spacetime Curvature via Gradient Flows I: Introduction

    Full text link
    Traditional approaches to the study of the dynamics of spacetime curvature in a very real sense hide the intricacies of the nonlinear regime. Whether it be huge formulae, or mountains of numerical data, standard methods of presentation make little use of our remarkable skill, as humans, at pattern recognition. Here we introduce a new approach to the visualization of spacetime curvature. We examine the flows associated with the gradient fields of invariants derived from the spacetime. These flows reveal a remarkably rich structure, and offer fresh insights even for well known analytical solutions to Einstein's equations. This paper serves as an overview and as an introduction to this approach.Comment: 10 pages twocolumn revtex 4-1 two figures. Final form to appear in Phys Rev

    Profiling the Dead: Generating Microsatellite Data from Fossil Bones of Extinct Megafauna—Protocols, Problems, and Prospects

    Get PDF
    We present the first set of microsatellite markers developed exclusively for an extinct taxon. Microsatellite data have been analysed in thousands of genetic studies on extant species but the technology can be problematic when applied to low copy number (LCN) DNA. It is therefore rarely used on substrates more than a few decades old. Now, with the primers and protocols presented here, microsatellite markers are available to study the extinct New Zealand moa (Aves: Dinornithiformes) and, as with single nucleotide polymorphism (SNP) technology, the markers represent a means bywhich the field of ancient DNA can (preservation allowing) move on from its reliance on mitochondrial DNA. Candidate markers were identified using high throughput sequencing technology (GS-FLX) on DNA extracted from fossil moa bone and eggshell. From the ‘shotgun’ reads, .60 primer pairs were designed and tested on DNA from bones of the South Island giant moa (Dinornis robustus). Six polymorphic loci were characterised and used to assess measures of genetic diversity. Because of low template numbers, typical of ancient DNA, allelic dropout was observed in 36–70% of the PCR reactions at each microsatellite marker. However, a comprehensive survey of allelic dropout, combined with supporting quantitative PCR data, allowed us to establish a set of criteria that maximised data fidelity. Finally, we demonstrated the viability of the primers and the protocols, by compiling a full Dinornis microsatellite dataset representing fossils of c. 600–5000 years of age. A multi-locus genotype was obtained from 74 individuals (84% success rate), and the data showed no signs of being compromised by allelic dropout. The methodology presented here provides a framework by which to generate and evaluate microsatellite data from samples of much greater antiquity than attempted before, and opens new opportunities for ancient DNA research

    Investigating the properties of granulation in the red giants observed by Kepler

    Full text link
    More than 1000 red giants have been observed by NASA/Kepler mission during a nearly continuous period of ~ 13 months. The resulting high-frequency resolution (< 0.03 muHz) allows us to study the granulation parameters of these stars. The granulation pattern results from the convection motions leading to upward flows of hot plasma and downward flows of cooler plasma. We fitted Harvey-like functions to the power spectra, to retrieve the timescale and amplitude of granulation. We show that there is an anti-correlation between both of these parameters and the position of maximum power of acoustic modes, while we also find a correlation with the radius, which agrees with the theory. We finally compare our results with 3D models of the convection.Comment: 4 pages, 1 figure. To appear in the ASP proceedings of "The 61st Fujihara seminar: Progress in solar/stellar physics with helio- and asteroseismology", 13th-17th March 2011, Hakone, Japa

    Hydrogen-poor superluminous stellar explosions

    Full text link
    Supernovae (SNe) are stellar explosions driven by gravitational or thermonuclear energy, observed as electromagnetic radiation emitted over weeks or more. In all known SNe, this radiation comes from internal energy deposited in the outflowing ejecta by either radioactive decay of freshly-synthesized elements (typically 56Ni), stored heat deposited by the explosion shock in the envelope of a supergiant star, or interaction between the SN debris and slowly-moving, hydrogen-rich circumstellar material. Here we report on a new class of luminous SNe whose observed properties cannot be explained by any of these known processes. These include four new SNe we have discovered, and two previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as members. These SNe are all ~10 times brighter than SNe Ia, do not show any trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods of time, and have late-time decay rates which are inconsistent with radioactivity. Our data require that the observed radiation is emitted by hydrogen-free material distributed over a large radius (~10^15 cm) and expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous events can be observed out to redshifts z>4 and offer an excellent opportunity to study star formation in, and the interstellar medium of, primitive distant galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U

    Electric Field Conjugation with the Project 1640 coronagraph

    Full text link
    The Project 1640 instrument on the 200-inch Hale telescope at Palomar Observatory is a coronagraphic instrument with an integral field spectrograph at the back end, designed to find young, self-luminous planets around nearby stars. To reach the necessary contrast for this, the PALM-3000 adaptive optics system corrects for fast atmospheric speckles, while CAL, a phase-shifting interferometer in a Mach-Zehnder configuration, measures the quasistatic components of the complex electric field in the pupil plane following the coronagraphic stop. Two additional sensors measure and control low-order modes. These field measurements may then be combined with a system model and data taken separately using a white-light source internal to the AO system to correct for both phase and amplitude aberrations. Here, we discuss and demonstrate the procedure to maintain a half-plane dark hole in the image plane while the spectrograph is taking data, including initial on-sky performance.Comment: 9 pages, 7 figures, in Proceedings of SPIE, 8864-19 (2013
    corecore