90,293 research outputs found

    Optical communications system Patent

    Get PDF
    Specifications and drawings for semipassive optical communication syste

    Looking for a gift of Nature: Hadron loops and hybrid mixing

    Full text link
    We investigate how coupling of valence q qbar to meson pairs can modify the properties of conventional q qbar and hybrid mesons. In a symmetry limit the mixing between hybrids and conventional q qbar with the same J^PC is shown to vanish. Flavor mixing between heavy and light q qbar due to meson loops is shown to be dual to the results of gluon mediated pQCD, and qualitatively different from mixing involving light flavors alone. The validity of the OZI rule for conventional q qbar and hybrid mesons is discussed.Comment: v2: added important references and discussion of previous literature; results and conclusions unchanged. 8 pages, 2 figure

    Mariner 9 data storage subsystem flight performance summary

    Get PDF
    The performance is summarized of the Mariner 9 Data Storage Subsystem (DSS) throughout the primary and extended missions. Information presented is limited to reporting of anomalies which occurred during the playback sequences. Tables and figures describe the anomalies (dropouts, missing and added bits, in the imaging data) as a function of time (accumulated tape passes). The data results indicate that the performance of the DSS was satisfactory and within specification throughout the mission. The data presented is taken from the Spacecraft Team Incident/Surprise Anomaly Log recorded during the mission. Pertinent statistics concerning the tape transport performance are given. Also presented is a brief description of DSS operation, particularly that related to the recorded anomalies. This covers the video data encoding and how it is interpreted/decoded by ground data processing and the functional operation of the DSS in abnormal conditions such as loss of lock to the playback signal

    The effect of induced charges on low-energy particle trajectories near conducting and semiconducting plates

    Get PDF
    The effect of the induced charge was found on particles less than 1 eV as they passed through simulated parallel, grounded channels that are comparable in dimension to those that are presently in space plasma instruments which measure the flux of low-energy ions. Applications were made to both conducting and semiconducting channels that ranged in length from 0.1 to 50 mm and in aspect ratio from 1 to 100. The effect of the induced charge on particle trajectories from simple straight lines. Several configurations of channel aspect ratio and detector locations are considered. The effect is important only at very low energies with small dimensions

    Van Hove singularities in the paramagnetic phase of the Hubbard model: a DMFT study

    Full text link
    Using the dynamical mean-field theory (DMFT) we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional cubic lattice and the two-dimensional square lattice, as well as a DOS with inverse square root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudo-gap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi liquid behavior is recovered.Comment: 7 pages, 9 figure

    Comparison of simple mass estimators for slowly rotating elliptical galaxies

    Full text link
    We compare the performance of mass estimators for elliptical galaxies that rely on the directly observable surface brightness and velocity dispersion profiles, without invoking computationally expensive detailed modeling. These methods recover the mass at a specific radius where the mass estimate is expected to be least sensitive to the anisotropy of stellar orbits. One method (Wolf et al. 2010) uses the total luminosity-weighted velocity dispersion and evaluates the mass at a 3D half-light radius r1/2r_{1/2}, i.e., it depends on the GLOBAL galaxy properties. Another approach (Churazov et al. 2010) estimates the mass from the velocity dispersion at a radius R2R_2 where the surface brightness declines as R2R^{-2}, i.e., it depends on the LOCAL properties. We evaluate the accuracy of the two methods for analytical models, simulated galaxies and real elliptical galaxies that have already been modeled by the Schwarzschild's orbit-superposition technique. Both estimators recover an almost unbiased circular speed estimate with a modest RMS scatter (10%\lesssim 10 \%). Tests on analytical models and simulated galaxies indicate that the local estimator has a smaller RMS scatter than the global one. We show by examination of simulated galaxies that the projected velocity dispersion at R2R_2 could serve as a good proxy for the virial galaxy mass. For simulated galaxies the total halo mass scales with σp(R2)\sigma_p(R_2) as Mvir[Mh1]61012(σp(R2)200kms1)4M_{vir} \left[M_{\odot}h^{-1}\right] \approx 6\cdot 10^{12} \left( \frac{\sigma_p(R_2)}{200\, \rm km\, s^{-1}} \right)^{4} with RMS scatter 40%\approx 40 \%.Comment: 19 pages, 14 figures, 4 tables, accepted for publication in MNRA

    Statistics of reversible bond dynamics observed in force-clamp spectroscopy

    Full text link
    We present a detailed analysis of two-state trajectories obtained from force-clamp spectroscopy (FCS) of reversibly bonded systems. FCS offers the unique possibility to vary the equilibrium constant in two-state kinetics, for instance the unfolding and refolding of biomolecules, over many orders of magnitude due to the force dependency of the respective rates. We discuss two different kinds of counting statistics, the event-counting usually employed in the statistical analysis of two-state kinetics and additionally the so-called cycle-counting. While in the former case all transitions are counted, cycle-counting means that we focus on one type of transitions. This might be advantageous in particular if the equilibrium constant is much larger or much smaller than unity because in these situations the temporal resolution of the experimental setup might not allow to capture all transitions of an event-counting analysis. We discuss how an analysis of FCS data for complex systems exhibiting dynamic disorder might be performed yielding information about the detailed force-dependence of the transition rates and about the time scale of the dynamic disorder. In addition, the question as to which extent the kinetic scheme can be viewed as a Markovian two-state model is discussed.Comment: 25 pages, 10 figures, Phys. Rev. E, in pres
    corecore