12,047 research outputs found

    A precise determination of alpha_s from LEP thrust data using effective field theory

    Get PDF
    Starting from a factorization theorem in Soft-Collinear Effective Theory, the thrust distribution in e+e- collisions is calculated including resummation of the next-to-next-to-next-to leading logarithms. This is a significant improvement over previous calculations which were only valid to next-to-leading logarithmic order. The fixed-order expansion of the resummed result approaches the exact fixed-order distribution towards the kinematic endpoint. This close agreement provides a verification of both the effective field theory expression and recently completed next-to-next-to-leading fixed order event shapes. The resummed distribution is then matched to fixed order, resulting in a distribution valid over a large range of thrust. A fit to ALEPH and OPAL data from LEP 1 and LEP 2 produces alpha_s(m_Z)= 0.1172 +/- 0.0010 +/- 0.0008 +/-0.0012 +/- 0.0012, where the uncertainties are respectively statistical, systematic, hadronic, and perturbative. This is one of the world's most precise extractions of alpha_s to date.Comment: 37 pages, 12 figures; v2: hadronization discussion and appendices expande

    Precision direct photon and W-boson spectra at high p_T and comparison to LHC data

    Full text link
    The differential p_T spectrum for vector boson production is computed at next-to-leading fixed order and including the resummation of threshold logarithms at next-to-next-to-leading logarithmic accuracy. A comparison is made to ATLAS data on direct photon and W production at high transverse momentum p_T, finding excellent agreement. The resummation is achieved by factorizing contributions associated with different scales using Soft-Collinear Effective Theory. Each part is then calculated perturbatively and the individual contributions are combined using renormalization group methods. A key advantage of the effective theory framework is that it indicates a set of natural scale choices, in contrast to the fixed-order calculation. Resummation of logarithms of ratios of these scales leads to better agreement with data and reduced theoretical uncertainties.Comment: 24 pages, 10 figures; v2: journal version; v3: corrections in (20), (37), (38

    Groups and semigroups with a one-counter word problem

    Get PDF
    We prove that a finitely generated semigroup whose word problem is a one-counter language has a linear growth function. This provides us with a very strong restriction on the structure of such a semigroup, which, in particular, yields an elementary proof of a result of Herbst, that a group with a one-counter word problem is virtually cyclic. We prove also that the word problem of a group is an intersection of finitely many one-counter languages if and only if the group is virtually abelian

    Endogenous Dopamine and Endocannabinoid Signaling Mediate Cocaine-Induced Reversal of AMPAR Synaptic Potentiation in the Nucleus Accumbens Shell

    Get PDF
    Repeated exposure to drugs of abuse alters the structure and function of neural circuits mediating reward, generating maladaptive plasticity in circuits critical for motivated behavior. Within meso-corticolimbic dopamine circuitry, repeated exposure to cocaine induces progressive alterations in AMPAR-mediated glutamatergic synaptic transmission. During a 10–14 day period of abstinence from cocaine, AMPAR signaling is potentiated at synapses on nucleus accumbens (NAc) medium spiny neurons (MSNs), promoting a state of heightened synaptic excitability. Re-exposure to cocaine during abstinence, however, rapidly reverses and depotentiates enhanced AMPAR signaling. To understand how re-exposure to cocaine alters AMPAR synaptic transmission, we investigated the roles of dopamine and endocannabinoid (eCB) signaling in modifying synaptic strength in the NAc shell. Using patch-clamp recordings from NAc slices prepared after 10–14 days of abstinence from repeated cocaine, we found that AMPAR-mediated depotentiation is rapidly induced in the NAc shell within 20 min of cocaine re-exposure ex vivo, and persists for up to five days before synapses return to levels of potentiation observed during abstinence. In cocaine-treated animals, global dopamine receptor activation was both necessary and sufficient for the cocaine-evoked depotentiation of AMPAR synaptic function. Additionally, we identified that CB1 receptors are engaged by endogenous endocannabinoids (eCBs) during re-exposure to cocaine ex vivo. Overall, these results indicate the central role that dopamine and eCB signaling mechanisms play in modulating cocaine-induced AMPAR plasticity in the NAc shell

    Endogenous Dopamine and Endocannabinoid Signaling Mediate Cocaine-Induced Reversal of AMPAR Synaptic Potentiation in the Nucleus Accumbens Shell

    Get PDF
    Repeated exposure to drugs of abuse alters the structure and function of neural circuits mediating reward, generating maladaptive plasticity in circuits critical for motivated behavior. Within meso-corticolimbic dopamine circuitry, repeated exposure to cocaine induces progressive alterations in AMPAR-mediated glutamatergic synaptic transmission. During a 10–14 day period of abstinence from cocaine, AMPAR signaling is potentiated at synapses on nucleus accumbens (NAc) medium spiny neurons (MSNs), promoting a state of heightened synaptic excitability. Re-exposure to cocaine during abstinence, however, rapidly reverses and depotentiates enhanced AMPAR signaling. To understand how re-exposure to cocaine alters AMPAR synaptic transmission, we investigated the roles of dopamine and endocannabinoid (eCB) signaling in modifying synaptic strength in the NAc shell. Using patch-clamp recordings from NAc slices prepared after 10–14 days of abstinence from repeated cocaine, we found that AMPAR-mediated depotentiation is rapidly induced in the NAc shell within 20 min of cocaine re-exposure ex vivo, and persists for up to five days before synapses return to levels of potentiation observed during abstinence. In cocaine-treated animals, global dopamine receptor activation was both necessary and sufficient for the cocaine-evoked depotentiation of AMPAR synaptic function. Additionally, we identified that CB1 receptors are engaged by endogenous endocannabinoids (eCBs) during re-exposure to cocaine ex vivo. Overall, these results indicate the central role that dopamine and eCB signaling mechanisms play in modulating cocaine-induced AMPAR plasticity in the NAc shell

    Pushdown Control-Flow Analysis for Free

    Full text link
    Traditional control-flow analysis (CFA) for higher-order languages, whether implemented by constraint-solving or abstract interpretation, introduces spurious connections between callers and callees. Two distinct invocations of a function will necessarily pollute one another's return-flow. Recently, three distinct approaches have been published which provide perfect call-stack precision in a computable manner: CFA2, PDCFA, and AAC. Unfortunately, CFA2 and PDCFA are difficult to implement and require significant engineering effort. Furthermore, all three are computationally expensive; for a monovariant analysis, CFA2 is in O(2n)O(2^n), PDCFA is in O(n6)O(n^6), and AAC is in O(n9logn)O(n^9 log n). In this paper, we describe a new technique that builds on these but is both straightforward to implement and computationally inexpensive. The crucial insight is an unusual state-dependent allocation strategy for the addresses of continuation. Our technique imposes only a constant-factor overhead on the underlying analysis and, with monovariance, costs only O(n3) in the worst case. This paper presents the intuitions behind this development, a proof of the precision of this analysis, and benchmarks demonstrating its efficacy.Comment: in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 201
    • …
    corecore