221 research outputs found

    Women with Heart Failure Are at High Psychosocial Risk: A Systematic Review of How Sex and Gender Influence Heart Failure Self-Care

    Get PDF
    To improve patient support, it is important to understand how people view and experience Heart Failure (HF) self-care. This systematic review of qualitative studies included all published studies that examine the influence of sex and gender on HF self-care. A systematic search was done for papers (1995–2010) indexed in Ovid MEDLINE, Ovid Medline, Ovid EMBASE, Ovid PsycINFO, CSA Sociological Abstracts, OVID AARP Ageline, EBSCO Academic Search Complete, EBSCO CINAHL, EBSCO SocINDEX, ISI Web of Science: Social Sciences Citation Index and Science Citation Index Expanded, and Scopus. After screening of 537 citations, six qualitative studies identified that differences existed in perceptions of symptoms with women having less family involvement and psychosocial support around self-care. Moreover, women had considerably more negative views of the future, themselves and their ability to fulfill social self-care roles. Women with HF represent a highly vulnerable population and need more support for psychosocial wellbeing and self-care

    The Impact of Cognitive Deficits and Spasticity on Driving Simulator Performance in Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a demyelinating disease that can result in numerous sequelae. Although spasticity and cognitive dysfunction are common in MS, few studies have examined the impact of both factors on driving abilities in persons with physical impairments. The present study assessed driving performance in control participants and MS patients with documented spasticity using two brief simulations designed to measure lane tracking (under high cognitive load) and car following behavior. Seventeen MS patients and 9 controls participated in the study. The MS cohort exhibited a broad range of cognitive functioning (normal to significant impairment) and disability (Expanded Disability Status Scale scores of 3.0 to 7.5). Eight of the MS patients had significant spasticity in their right knee based upon the Modified Ashworth Spasticity Scale. MS patients had greater difficulty than controls on the simulations, particularly on the car following task. MS participants also tended to drive at higher speeds than the control participants. Within the MS cohort, cognitive dysfunction was most strongly associated with lane tracking decrements, whereas the possible relationship between cognitive function and car following behavior was eclipsed by lower limb spasticity. Spastic individuals had greater difficulty mirroring speed changes in the lead car, and were approximately one second slower in responding to its accelerations and decelerations. The current simulations provide important data regarding the impact various MS sequelae may have on driving performance, and may ultimately lead to clinical recommendations regarding specific driving behaviors and their associated risks

    A community convention for ecological forecasting: output files and metadata

    Get PDF
    This document summarizes the open community standards developed by the Ecological Forecasting Initiative (EFI) for the common formatting and archiving of ecological forecasts and the metadata associated with these forecasts. Such open standards are intended to promote interoperability and facilitate forecast adoption, distribution, validation, and synthesis. For output files EFI has adopted a three-tiered approach reflecting trade-offs in forecast data volume and technical expertise. The preferred output file format is netCDF following the Climate and Forecast Convention for dimensions and variable naming, including an ensemble dimension where appropriate. The second-tier option is a semi-long CSV format, with state variables as columns and each row representing a unique issue date time, prediction date time, location, ensemble member, etc. The third-tier option is similar to option 2, but each row represents a specific summary statistic (mean, upper/lower CI) rather than individual ensemble members. For metadata, EFI expands upon the Ecological Metadata Language (EML), using additional Metadata tags to store information designed to facilitate cross-forecast synthesis (e.g. uncertainty propagation, data assimilation, model complexity) and setting a subset of base EML tags (e.g. temporal resolution, output variables) to be required. To facilitate community adoption we also provides a R package containing a number of vignettes on how to both write and read in the EFI standard, as well as a metadata validator tool.First author draf

    Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    Get PDF
    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models

    The LatMix summer campaign : submesoscale stirring in the upper ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 1257–1279, doi:10.1175/BAMS-D-14-00015.1.Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.The bulk of this work was funded under the Scalable Lateral Mixing and Coherent Turbulence Departmental Research Initiative and the Physical Oceanography Program. The dye experiments were supported jointly by the Office of Naval Research and the National Science Foundation Physical Oceanography Program (Grants OCE-0751653 and OCE-0751734).2016-02-0

    Associations of Neighborhood Opportunity and Social Vulnerability With Trajectories of Childhood Body Mass Index and Obesity Among US Children

    Get PDF
    IMPORTANCE: Physical and social neighborhood attributes may have implications for children\u27s growth and development patterns. The extent to which these attributes are associated with body mass index (BMI) trajectories and obesity risk from childhood to adolescence remains understudied. OBJECTIVE: To examine associations of neighborhood-level measures of opportunity and social vulnerability with trajectories of BMI and obesity risk from birth to adolescence. DESIGN, SETTING, AND PARTICIPANTS: This cohort study used data from 54 cohorts (20 677 children) participating in the Environmental Influences on Child Health Outcomes (ECHO) program from January 1, 1995, to January 1, 2022. Participant inclusion required at least 1 geocoded residential address and anthropometric measure (taken at the same time or after the address date) from birth through adolescence. Data were analyzed from February 1 to June 30, 2022. EXPOSURES: Census tract-level Child Opportunity Index (COI) and Social Vulnerability Index (SVI) linked to geocoded residential addresses at birth and in infancy (age range, 0.5-1.5 years), early childhood (age range, 2.0-4.8 years), and mid-childhood (age range, 5.0-9.8 years). MAIN OUTCOMES AND MEASURES: BMI (calculated as weight in kilograms divided by length [if aged \u3c2 \u3eyears] or height in meters squared) and obesity (age- and sex-specific BMI ≥95th percentile). Based on nationwide distributions of the COI and SVI, Census tract rankings were grouped into 5 categories: very low (\u3c20th \u3epercentile), low (20th percentile to \u3c40th \u3epercentile), moderate (40th percentile to \u3c60th \u3epercentile), high (60th percentile to \u3c80th \u3epercentile), or very high (≥80th percentile) opportunity (COI) or vulnerability (SVI). RESULTS: Among 20 677 children, 10 747 (52.0%) were male; 12 463 of 20 105 (62.0%) were White, and 16 036 of 20 333 (78.9%) were non-Hispanic. (Some data for race and ethnicity were missing.) Overall, 29.9% of children in the ECHO program resided in areas with the most advantageous characteristics. For example, at birth, 26.7% of children lived in areas with very high COI, and 25.3% lived in areas with very low SVI; in mid-childhood, 30.6% lived in areas with very high COI and 28.4% lived in areas with very low SVI. Linear mixed-effects models revealed that at every life stage, children who resided in areas with higher COI (vs very low COI) had lower mean BMI trajectories and lower risk of obesity from childhood to adolescence, independent of family sociodemographic and prenatal characteristics. For example, among children with obesity at age 10 years, the risk ratio was 0.21 (95% CI, 0.12-0.34) for very high COI at birth, 0.31 (95% CI, 0.20-0.51) for high COI at birth, 0.46 (95% CI, 0.28-0.74) for moderate COI at birth, and 0.53 (95% CI, 0.32-0.86) for low COI at birth. Similar patterns of findings were observed for children who resided in areas with lower SVI (vs very high SVI). For example, among children with obesity at age 10 years, the risk ratio was 0.17 (95% CI, 0.10-0.30) for very low SVI at birth, 0.20 (95% CI, 0.11-0.35) for low SVI at birth, 0.42 (95% CI, 0.24-0.75) for moderate SVI at birth, and 0.43 (95% CI, 0.24-0.76) for high SVI at birth. For both indices, effect estimates for mean BMI difference and obesity risk were larger at an older age of outcome measurement. In addition, exposure to COI or SVI at birth was associated with the most substantial difference in subsequent mean BMI and risk of obesity compared with exposure at later life stages. CONCLUSIONS AND RELEVANCE: In this cohort study, residing in higher-opportunity and lower-vulnerability neighborhoods in early life, especially at birth, was associated with a lower mean BMI trajectory and a lower risk of obesity from childhood to adolescence. Future research should clarify whether initiatives or policies that alter specific components of neighborhood environment would be beneficial in preventing excess weight in children

    Thinking outside the channel : modeling nitrogen cycling in networked river ecosystems

    Get PDF
    Author Posting. © Ecological Society of America, 2011. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 9 (2011): 229–238, doi:10.1890/080211.Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate biogeochemical dynamics among diverse river networks. We illustrate these limitations using a river-network model to scale up in situ measures of nitrogen cycling in eight catchments spanning various geophysical and land-use conditions. Our model results provide evidence that catchment characteristics typically excluded from models may control river-network biogeochemistry. Based on our findings, we identify important components of a revised strategy for simulating biogeochemical dynamics in river networks, including approaches to modeling terrestrial–aquatic linkages, hydrologic exchanges between the channel, floodplain/riparian complex, and subsurface waters, and interactions between coupled biogeochemical cycles.This research was supported by NSF (DEB-0111410). Additional support was provided by NSF for BJP and SMT (DEB-0614301), for WMW (OCE-9726921 and DEB-0614282), for WHM and JDP (DEB-0620919), for SKH (DEB-0423627), and by the Gordon and Betty Moore Foundation for AMH, GCP, ESB, and JAS, and by an EPA Star Fellowship for AMH

    Stream denitrification across biomes and its response to anthropogenic nitrate loading

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 452 (2008): 202-205, doi:10.1038/nature06686.Worldwide, anthropogenic addition of bioavailable nitrogen (N) to the biosphere is increasing and terrestrial ecosystems are becoming increasingly N saturated, causing more bioavailable N to enter groundwater and surface waters. Large-scale N budgets show that an average of about 20-25% of the N added to the biosphere is exported from rivers to the ocean or inland basins, indicating substantial sinks for N must exist in the landscape. Streams and rivers may be important sinks for bioavailable N owing to their hydrologic connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favor microbial denitrification. Here, using data from 15N tracer experiments replicated across 72 streams and 8 regions representing several biomes, we show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of instream nitrate that is removed from transport. Total uptake of nitrate was related to ecosystem photosynthesis and denitrification was related to ecosystem respiration. Additionally, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.Funding for this research was provided by the National Science Foundation
    corecore