5,918 research outputs found

    Locally Adaptive Bayesian P-Splines with a Normal-Exponential-Gamma Prior

    Get PDF
    The necessity to replace smoothing approaches with a global amount of smoothing arises in a variety of situations such as effects with highly varying curvature or effects with discontinuities. We present an implementation of locally adaptive spline smoothing using a class of heavy-tailed shrinkage priors. These priors utilize scale mixtures of normals with locally varying exponential-gamma distributed variances for the differences of the P-spline coefficients. A fully Bayesian hierarchical structure is derived with inference about the posterior being based on Markov Chain Monte Carlo techniques. Three increasingly flexible and automatic approaches are introduced to estimate the spatially varying structure of the variances. In an extensive simulation study, the performance of our approach on a number of benchmark functions is shown to be at least equivalent, but mostly better than previous approaches and fits both functions of smoothly varying complexity and discontinuous functions well. Results from two applications also reflecting these two situations support the simulation results

    Natural and Projectively Invariant Quantizations on Supermanifolds

    Full text link
    The existence of a natural and projectively invariant quantization in the sense of P. Lecomte [Progr. Theoret. Phys. Suppl. (2001), no. 144, 125-132] was proved by M. Bordemann [math.DG/0208171], using the framework of Thomas-Whitehead connections. We extend the problem to the context of supermanifolds and adapt M. Bordemann's method in order to solve it. The obtained quantization appears as the natural globalization of the pgl(n+1m)\mathfrak{pgl}({n+1|m})-equivariant quantization on Rnm{\mathbb{R}}^{n|m} constructed by P. Mathonet and F. Radoux in [arXiv:1003.3320]. Our quantization is also a prolongation to arbitrary degree symbols of the projectively invariant quantization constructed by J. George in [arXiv:0909.5419] for symbols of degree two

    Conformational selection in protein binding and function

    Full text link
    Protein binding and function often involves conformational changes. Advanced NMR experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may 'select' protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule FRET experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction.Comment: review article; 10 pages, 4 figures, Protein Sci. 201
    corecore