4,645 research outputs found

    The place of pasture in Iowa farming

    Get PDF
    Though nearly as much land in Iowa is devoted to pasture as to corn, pastures have received very little thought or attention. The reasons why pastures have been given so little consideration are: (1) the lower per acre returns from pasture than from corn, (2) the fact that pasture is more nearly a fixed element in the business, and (3) the somewhat prevalent belief that little or nothing worth the cost can be done to pastures to make them more productive. Pasture is important, however, because it supplies a type of feed which is essential for livestock, and enables the farmer to get a higher return from some rough areas than could be obtained from cultivated crops. Sometimes pasture helps to prevent erosion

    Unique fine scale village spatial-temporal distributions of Anopheles farauti differ by physiological state and sex

    Get PDF
    Background: The ecology of many mosquitoes, including Anopheles farauti, the dominant malaria vector in the southwest Pacific including the Solomon Islands, remains inadequately understood. Studies to map fine scale vector distributions are biased when trapping techniques use lures that will influence the natural movements of mosquitoes by attracting them to traps. However, passive collection methods allow the detailed natural distributions of vector populations by sex and physiological states to be revealed. Methods: The barrier screen, a passive mosquito collection method along with human landing catches were used to record An. farauti distributions over time and space in two Solomon Island villages from May 2016 to July 2017. Results: Temporal and spatial distributions of over 15,000 mosquitoes, including males as well as unfed, host seeking, blood-fed, non-blood fed and gravid females were mapped. These spatial and temporal patterns varied by species, sex and physiological state. Sugar-fed An. farauti were mostly collected between 10–20 m away from houses with peak activity from 18:00 to 19:00 h. Male An. farauti were mostly collected greater than 20 m from houses with peak activity from 19:00 to 20:00 h. Conclusions: Anopheles farauti subpopulations, as defined by physiological state and sex, are heterogeneously distributed in Solomon Island villages. Understanding the basis for these observed heterogeneities will lead to more accurate surveillance of mosquitoes and will enable spatial targeting of interventions for greater efficiency and effectiveness of vector control

    Protecting the peri-domestic environment: the challenge for eliminating residual malaria

    Get PDF
    Malaria transmission after universal access and use of malaria preventive services is known as residual malaria transmission. The concurrent spatial-temporal distributions of people and biting mosquitoes in malaria endemic villages determines where and when residual malaria transmission occurs. Understanding human and vector population behaviors and movements is a critical first step to prevent mosquito bites to eliminate residual malaria transmission. This study identified where people in the Solomon Islands are over 24-hour periods. Participants (59%) were predominantly around the house but not in their house when most biting by Anopheles farauti, the dominant malaria vector, occurs. While 84% of people slept under a long-lasting insecticide-treated bed net (LLIN), on average only 7% were under an LLIN during the 18:00 to 21:00 h peak mosquito biting period. On average, 34% of participants spend at least one night away from their homes each fortnight. Despite high LLIN use while sleeping, most human biting by An. farauti occurs early in the evening before people go to sleep when people are in peri-domestic areas (predominantly on verandas or in kitchen areas). Novel vector control tools that protect individuals from mosquito bites between sundown and when people sleep are needed for peri-domestic areas

    Dimension Theory of Graphs and Networks

    Get PDF
    Starting from the working hypothesis that both physics and the corresponding mathematics have to be described by means of discrete concepts on the Planck-scale, one of the many problems one has to face in this enterprise is to find the discrete protoforms of the building blocks of continuum physics and mathematics. A core concept is the notion of dimension. In the following we develop such a notion for irregular structures like (large) graphs and networks and derive a number of its properties. Among other things we show its stability under a wide class of perturbations which is important if one has 'dimensional phase transitions' in mind. Furthermore we systematically construct graphs with almost arbitrary 'fractal dimension' which may be of some use in the context of 'dimensional renormalization' or statistical mechanics on irregular sets.Comment: 20 pages, 7 figures, LaTex2e, uses amsmath, amsfonts, amssymb, latexsym, epsfi

    Automatic-Scoring Actigraph Compares Favourably to a Manually-Scored Actigraph for Sleep Measurement in Healthy Adults.

    Get PDF
    Introduction  Actigraphy has been used widely in sleep research due to its non-invasive, cost-effective ability to monitor sleep. Traditionally, manually-scored actigraphy has been deemed the most appropriate in the research setting; however, technological advances have seen the emergence of automatic-scoring wearable devices and software. Methods  A total of 60-nights of sleep data from 20-healthy adult participants (10 male, 10 female, age: 26 ± 10 years) were collected while wearing two devices concomitantly. The objective was to compare an automatic-scoring device (Fatigue Science Readiband™ [AUTO]) and a manually-scored device (Micro Motionlogger® [MAN]) based on the Cole-Kripke method. Manual-scoring involved trained technicians scoring all 60-nights of sleep data. Sleep indices including total sleep time (TST), total time in bed (TIB), sleep onset latency (SOL), sleep efficiency (SE), wake after sleep onset (WASO), wake episodes per night (WE), sleep onset time (SOT) and wake time (WT) were assessed between the two devices using mean differences, 95% levels of agreement, Pearson-correlation coefficients ( r ), and typical error of measurement (TEM) analysis. Results  There were no significant differences between devices for any of the measured sleep variables ( p  ≥0.05). All sleep indices resulted in very-strong correlations ( all r  ≥0.84) between devices. A mean difference between devices of <1 minutes for TST was associated with a TEM of 15.5 minute (95% CI =12.3 to 17.7 minutes). Conclusion  Given there were no significant differences between devices in the current study, automatic-scoring actigraphy devices may provide a more practical and cost-effective alternative to manually-scored actigraphy in healthy populations

    The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits

    Get PDF
    In its polar layered deposits (PLD), Mars possesses a record of its recent climate, analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 2 ​km thick and contains thousands of layers, each containing information on the climatic and atmospheric state during its deposition, creating a climate archive. With detailed measurements of layer composition, it may be possible to extract age, accumulation rates, atmospheric conditions, and surface activity at the time of deposition, among other important parameters; gaining the information would allow us to “read” the climate record. Because Mars has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, which in turn can teach us about our own planet and the thousands of terrestrial exoplanets waiting to be discovered. During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars scientists and engineers who focused on determining the measurements needed to extract the climate record contained in the PLD. The group converged on four fundamental questions that must be answered with the goal of interpreting the climate record and finding its history based on the climate drivers. The group then proposed numerous measurements in order to answer these questions and detailed a sequence of missions and architecture to complete the measurements. In all, several missions are required, including an orbiter that can characterize the present climate and volatile reservoirs; a static reconnaissance lander capable of characterizing near surface atmospheric processes, annual accumulation, surface properties, and layer formation mechanism in the upper 50 ​cm of the PLD; a network of SmallSat landers focused on meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed platform to access ~500 ​m of layers to measure layer variability through time. This mission architecture, with two landers, would meet the science goals and is designed to save costs compared to a single very capable landed mission. The rationale for this plan is presented below. In this paper we discuss numerous aspects, including our motivation, background of polar science, the climate science that drives polar layer formation, modeling of the atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs to climatological studies. Finally, we present a list of measurements and missions required to answer the four major questions and read the climate record. 1. What are present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? 3. What chemical and physical processes form and modify layers? 4. What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD

    Identification of serum biomarkers for aging and anabolic response

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>With the progressive aging of the human population, there is an inexorable decline in muscle mass, strength and function. Anabolic supplementation with testosterone has been shown to effectively restore muscle mass in both young and elderly men. In this study, we were interested in identifying serum factors that change with age in two distinct age groups of healthy men, and whether these factors were affected by testosterone supplementation.</p> <p>Methods</p> <p>We measured the protein levels of a number of serum biomarkers using a combination of banked serum samples from older men (60 to 75 years) and younger men (ages 18 to 35), as well as new serum specimens obtained through collaboration. We compared baseline levels of all biomarkers between young and older men. In addition, we evaluated potential changes in these biomarker levels in association with testosterone dose (low dose defined as 125 mg per week or below compared to high dose defined as 300 mg per week or above) in our banked specimens.</p> <p>Results</p> <p>We identified nine serum biomarkers that differed between the young and older subjects. These age-associated biomarkers included: insulin-like growth factor (IGF1), N-terminal propeptide of type III collagen (PIIINP), monokine induced by gamma interferon (MIG), epithelial-derived neutrophil-activating peptide 78 (ENA78), interleukin 7 (IL-7), p40 subunit of interleukin 12 (IL-12p40), macrophage inflammatory protein 1β (MIP-1β), platelet derived growth factor β (PDGFβ) and interferon-inducible protein 10 (IP-10). We further observed testosterone dose-associated changes in some but not all age related markers: IGF1, PIIINP, leptin, MIG and ENA78. Gains in lean mass were confirmed by dual energy X-ray absorptiometry (DEXA).</p> <p>Conclusions</p> <p>Results from this study suggest that there are potential phenotypic biomarkers in serum that can be associated with healthy aging and that some but not all of these biomarkers reflect gains in muscle mass upon testosterone administration.</p

    MUSCAT: The Mexico-UK Sub-Millimetre Camera for AsTronomy

    Get PDF
    The Mexico-UK Sub-millimetre Camera for AsTronomy (MUSCAT) is a large-format, millimetre-wave camera consisting of 1,500 background-limited lumped-element kinetic inductance detectors (LEKIDs) scheduled for deployment on the Large Millimeter Telescope (Volc\'an Sierra Negra, Mexico) in 2018. MUSCAT is designed for observing at 1.1 mm and will utilise the full 40' field of view of the LMTs upgraded 50-m primary mirror. In its primary role, MUSCAT is designed for high-resolution follow-up surveys of both galactic and extra-galactic sub-mm sources identified by Herschel. MUSCAT is also designed to be a technology demonstrator that will provide the first on-sky demonstrations of novel design concepts such as horn-coupled LEKID arrays and closed continuous cycle miniature dilution refrigeration. Here we describe some of the key design elements of the MUSCAT instrument such as the novel use of continuous sorption refrigerators and a miniature dilutor for continuous 100-mK cooling of the focal plane, broadband optical coupling to Aluminium LEKID arrays using waveguide chokes and anti-reflection coating materials as well as with the general mechanical and optical design of MUSCAT. We explain how MUSCAT is designed to be simple to upgrade and the possibilities for changing the focal plane unit that allows MUSCAT to act as a demonstrator for other novel technologies such as multi-chroic polarisation sensitive pixels and on-chip spectrometry in the future. Finally, we will report on the current status of MUSCAT's commissioning.Comment: Presented at SPIE Astronomical Telescopes + Instrumentation, 2018, Austin, Texas, United State
    corecore