13,335 research outputs found

    Derivation of supply curves for catchment water effluents meeting specific salinity concentration targets in 2050: linking farm and catchment level models or “Footprints on future salt / water planes”

    Get PDF
    The salt burden in a stream reflects the blend of salty and fresh flows from different soil areas in its catchment. Depending not only on long-run rainfall, water yields from a soil are also determined by land cover: lowest if the area is forested and greatest if cleared. Water yields under agro-forestry, lucerne pasture, perennial grass pasture, and annual pasture or cropping options span the range of water yields between the extremes of forested and cleared lands. This study explores quantitative approaches for connecting the hydrologic and economic consequences of farm-level decisions on land cover (productive land uses) to the costs of attaining different catchment level targets of water volumes and salt reaching downstream users; environmental, agricultural, domestic, commercial and industrial. This connection is critical for the resolution of the externality dilemma of meeting downstream demands for water volume and quality. New technology, new products and new markets will expand options for salinity abatement measures in the dryland farming areas of watershed catchments. The development of appropriate policy solutions to address demands for water volumes and quality depends on the possibility of inducing targeted land use change in those catchments or parts of catchments where decreased saline flows or increased fresh water flows can return the best value for money. This study provides such a link.salinity, targets, opportunity cost, concentration, dilution, effluent, externality, supply, demand, policy, water quality, new technology, new markets, Resource /Energy Economics and Policy,

    'I want to go back to the text': Response Strategies on the Reading Subtest of the New TOEFL

    Get PDF
    This post-peer-review, pre-copyedit version of the article submitted to IUPUI ScholarWorks as part of the OASIS Project. Article reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Permission granted through posted policies on copyright owner’s website or through direct contact with copyright owner.This study describes the reading and test-taking strategies that test takers used on the ‘Reading’ section of the LanguEdge Courseware (2002) materials developed to familiarize prospective respondents with the new TOEFL. The investigation focused on strategies used to respond to more traditional ‘single selection’ multiple-choice formats (i.e., Basic Comprehension and Inferencing questions) and the new selected-response (multiple selection, drag-and-drop) Reading to Learn items. The latter were designed to simulate the academic skill of forming a comprehensive and coherent representation of an entire text, rather than focusing on discrete points in the text. Verbal report data were collected from 32 students, representing four language groups (Chinese, Japanese, Korean, and ‘Other’) doing the Reading section tasks from the LanguEdge Courseware materials. Students were randomly assigned to two of the six reading subtests, each consisting of a 600–700 word text with 12–13 items, and subjects’ verbal reports accompanying items representing each of the ten item types were evaluated to determine strategy use. The findings provide insights into the response behaviors prompted by the reading tasks on the new TOEFL

    Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Development

    Full text link
    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: (1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and (2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.Comment: 20 pages, 24 figure

    The mass-metallicity relation of local active galaxies

    Full text link
    We systematically measure the gas-phase metallicities and the mass-metallicity relation of a large sample of local active galaxies for the first time. Observed emission-line fluxes from the Sloan Digital Sky Survey (SDSS) are compared to a four-dimensional grid of photoionization models using the Bayesian parameter estimation code NebulaBayes. For the first time we take into account arbitrary mixing between HII region and narrow-line region (NLR) emission, and the models are also varied with metallicity, ionization parameter in the NLR, and the gas pressure. The active galactic nucleus (AGN) oxygen abundance is found to increase by ΔO/H∌0.1\Delta {\rm O/H} \sim 0.1 dex as a function of host galaxy stellar mass over the range 10.1<log⁥M∗/M⊙<11.310.1 < \log M_* / M_\odot < 11.3. We also measure the metallicity and ionization parameter of 231000 star-forming galaxies for comparison with the sample of 7670 Seyfert 2 galaxies. A systematic offset in oxygen abundance of 0.09 dex is observed between the mass-metallicity relations of the star-forming and active galaxies. We investigate potential causes of the offset, including sample selection and the treatment in the models of diffuse ionized gas, pressure, and ionization parameter. We cannot identify the major cause(s), but suspect contributions due to deficiencies in modeling the ionizing spectra and the treatment of dust physics. Optical diagnostic diagrams are presented with the star-forming and Seyfert data colored by the inferred oxygen abundance, ionization parameter and gas pressure, clearly illustrating the trends in these quantities.Comment: 12 pages, 4 figures and 1 table; accepted for publication in Ap

    Modelling and testing the x-ray performance of CCD and CMOS APS detectors using numerical finite element simulations

    Get PDF
    Pixellated monolithic silicon detectors operated in a photon-counting regime are useful in spectroscopic imaging applications. Since a high energy incident photon may produce many excess free carriers upon absorption, both energy and spatial information can be recovered by resolving each interaction event. The performance of these devices in terms of both the energy and spatial resolution is in large part determined by the amount of diffusion which occurs during the collection of the charge cloud by the pixels. Past efforts to predict the X-ray performance of imaging sensors have used either analytical solutions to the diffusion equation or simplified monte carlo electron transport models. These methods are computationally attractive and highly useful but may be complemented using more physically detailed models based on TCAD simulations of the devices. Here we present initial results from a model which employs a full transient numerical solution of the classical semiconductor equations to model charge collection in device pixels under stimulation from initially Gaussian photogenerated charge clouds, using commercial TCAD software. Realistic device geometries and doping are included. By mapping the pixel response to different initial interaction positions and charge cloud sizes, the charge splitting behaviour of the model sensor under various illuminations and operating conditions is investigated. Experimental validation of the model is presented from an e2v CCD30-11 device under varying substrate bias, illuminated using an Fe-55 source

    Complex coastlines responding to climate change: do shoreline shapes reflect present forcing or “remember” the distant past?

    Get PDF
    A range of planform morphologies emerge along sandy coastlines as a function of offshore wave climate. It has been implicitly assumed that the morphological response time is rapid compared to the timescales of wave climate change, meaning that coastal morphologies simply reflect the extant wave climate. This assumption has been explored by focussing on the response of two distinctive morphological coastlines – flying spits and cuspate capes – to changing wave climates, using a coastline evolution model. Results indicate that antecedent conditions are important in determining the evolution of morphologies, and that sandy coastlines can demonstrate hysteresis behaviour. In particular, antecedent morphology is particularly important in the evolution of flying spits, with characteristic timescales of morphological adjustment on the order of centuries for large spits. Characteristic timescales vary with the square of aspect ratios of capes and spits; for spits, these timescales are an order of magnitude longer than for capes (centuries vs. decades). When wave climates change more slowly than the relevant characteristic timescales, coastlines are able to adjust in a quasi-equilibrium manner. Our results have important implications for the management of sandy coastlines where decisions may be implicitly and incorrectly based on the assumption that present-day coastlines are in equilibrium with current conditions

    Annotated draft genome sequence of the apple scab pathogen Venturia inaequalis

    Get PDF
    Apple scab is one of the most economically important diseases of ap- ples worldwide. The disease is caused by the haploid ascomycete Venturia inaequalis. We present here an annotated V. inaequalis whole-genome sequence of 72 Mb, assembled into 238 contigs, with 13,761 predicted genes

    Narrow Line Cooling: Finite Photon Recoil Dynamics

    Full text link
    We present an extensive study of the unique thermal and mechanical dynamics for narrow-line cooling on the 1S0 - 3P1 88Sr transition. For negative detuning, trap dynamics reveal a transition from the semiclassical regime to the photon-recoil-dominated quantum regime, yielding an absolute minima in the equilibrium temperature below the single-photon recoil limit. For positive detuning, the cloud divides into discrete momentum packets whose alignment mimics lattice points on a face-centered-cubic crystal. This novel behavior arises from velocity selection and "positive feedback" acceleration due to a finite number of photon recoils. Cooling is achieved with blue-detuned light around a velocity where gravity balances the radiative force.Comment: 4 pages, 3 figures, Phys. Rev. Lett., in pres
    • 

    corecore