16 research outputs found

    Restricted Expression of Epstein-Barr Virus Latent Genes in Murine B Cells Derived from Embryonic Stem Cells

    Get PDF
    Background: Several human malignancies are associated with Epstein-Barr virus (EBV) and more than 95 % of the adult human population carries this virus lifelong. EBV efficiently infects human B cells and persists in this cellular compartment latently. EBV-infected B cells become activated and growth transformed, express a characteristic set of viral latent genes, and acquire the status of proliferating lymphoblastoid cell lines in vitro. Because EBV infects only primate cells, it has not been possible to establish a model of infection in immunocompetent rodents. Such a model would be most desirable in order to study EBV’s pathogenesis and latency in a suitable and amenable host. Methodology/Principal Findings: We stably introduced recombinant EBV genomes into mouse embryonic stem cells and induced their differentiation to B cells in vitro to develop the desired model. In vitro differentiated murine B cells maintained the EBV genomes but expression of viral genes was restricted to the latent membrane proteins (LMPs). In contrast to human B cells, EBV’s nuclear antigens (EBNAs) were not expressed detectably and growth transformed murine B cells did not arise in vitro. Aberrant splicing and premature termination of EBNA mRNAs most likely prevented the expression of EBNA genes required for B-cell transformation. Conclusions/Significance: Our findings indicate that fundamental differences in gene regulation between mouse and ma

    The Drosophila speciation factor HMR localizes to genomic insulator sites

    Get PDF
    Hybrid incompatibility between Drosophila melanogaster and D. simulans is caused by a lethal interaction of the proteins encoded by the Hmr and Lhr genes. In D. melanogaster the loss of HMR results in mitotic defects, an increase in transcription of transposable elements and a deregulation of heterochromatic genes. To better understand the molecular mechanisms that mediate HMR's function, we measured genome-wide localization of HMR in D. melanogaster tissue culture cells by chromatin immunoprecipitation. Interestingly, we find HMR localizing to genomic insulator sites that can be classified into two groups. One group belongs to gypsy insulators and another one borders HP1a bound regions at active genes. The transcription of the latter group genes is strongly affected in larvae and ovaries of Hmr mutant flies. Our data suggest a novel link between HMR and insulator proteins, a finding that implicates a potential role for genome organization in the formation of species

    RNA-dependent recruitment of the origin recognition complex

    No full text
    The origin recognition complex (ORC) has an important function in determining the initiation sites of DNA replication. In higher eukaryotes, ORC lacks sequence-specific DNA binding, and the mechanisms of ORC recruitment and origin determination are poorly understood. ORC is recruited with high efficiency to the Epstein–Barr virus origin of plasmid replication (OriP) through a complex mechanism involving interactions with the virus-encoded EBNA1 protein. We present evidence that ORC recruitment to OriP and DNA replication function depends on RGG-like motifs, referred to as LR1 and LR2, in the EBNA1 amino-terminal domain. Moreover, we show that LR1 and LR2 recruitment of ORC is RNA dependent. HMGA1a, which can functionally substitute for LR1 and LR2 domain, can also recruit ORC in an RNA-dependent manner. EBNA1 and HMGA1a RGG motifs bound to structured G-rich RNA, as did ORC1 peptides, which interact with EBNA1. RNase A treatment of cellular chromatin released a fraction of the total ORC, suggesting that ORC association with chromatin, and possibly cellular origins, is stabilized by RNA. We propose that structural RNA molecules mediate ORC recruitment at some cellular and viral origins, similar to OriP
    corecore