
RESEARCH ARTICLE

The Drosophila speciation factor HMR localizes

to genomic insulator sites

Thomas Andreas Gerland1,2, Bo Sun1, Pawel Smialowski1,3, Andrea Lukacs1, Andreas

Walter Thomae1,4, Axel Imhof1,2*

1 Biomedical Center, Histone Modifications Group, Department of Molecular Biology, Ludwig-Maximilians-

Universität München, Planegg-Martinsried, Germany, 2 Center for Integrated Protein Science Munich

(CIPSM), Ludwig-Maximilians-Universität München, Munich, Germany, 3 Biomedical Center, Core Facility

Computational Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany,

4 Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Planegg-

Martinsried, Germany

* imhof@lmu.de

Abstract

Hybrid incompatibility between Drosophila melanogaster and D. simulans is caused by a

lethal interaction of the proteins encoded by the Hmr and Lhr genes. In D. melanogaster

the loss of HMR results in mitotic defects, an increase in transcription of transposable ele-

ments and a deregulation of heterochromatic genes. To better understand the molecular

mechanisms that mediate HMR’s function, we measured genome-wide localization of

HMR in D. melanogaster tissue culture cells by chromatin immunoprecipitation. Interest-

ingly, we find HMR localizing to genomic insulator sites that can be classified into two

groups. One group belongs to gypsy insulators and another one borders HP1a bound

regions at active genes. The transcription of the latter group genes is strongly affected in

larvae and ovaries of Hmr mutant flies. Our data suggest a novel link between HMR and

insulator proteins, a finding that implicates a potential role for genome organization in the

formation of species.

Introduction

Biodiversity is the result of the emergence and the extinction of species. New species form

by pre- and post-zygotic isolation mediated by genetic incompatibility [1]. One of the best

characterized examples of hybrid incompatibility is the gene pair Hybrid male rescue (Hmr)

and Lethal hybrid rescue (Lhr). Hmr and Lhr cause hybrid incompatibility between the

closely related fly species Drosophila melanogaster and D. simulans. Hmr diverged in both

Drosophila sibling species under positive selection [2]. HMR and LHR from both species

interact physically and localize predominantly to centromeric regions [3]. A reduction of

HMR expression results in a misregulation of transposable elements, satellite DNAs and

heterochromatic genes [3–5]. The major difference between HMR and LHR in D. melanoga-
ster and D. simulans is their substantial difference in protein amounts [3,6], which has been

proposed to result in a lethal gain of function in male hybrids [3]. High levels of HMR and
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LHR in hybrids and overexpression of these proteins in pure species lead to an increased

number of binding sites of the complex [3]. Such spreading phenomena based on protein

amount have been observed for several chromatin-associated complexes such as the dosage

compensation complex [7,8], the polycomb complex [9] or components of pericentromeric

heterochromatin [10,11]. In most cases, the precise mechanisms for targeting and spreading

are not fully understood. Interestingly, several of the components involved in these pro-

cesses show signs of adaptive evolution and differ substantially even in very closely related

organisms [12–14]. This observation has spurred a model of a dynamic genome that drives

the adaptive evolution of chromatin-associated factors [15].

Eukaryotic genomes of closely related species differ mostly in the amount and sequence of

repetitive DNA [16–18]. This DNA is often derived from transposable elements, which are

highly mutagenic and are therefore under tight transcriptional control by the cellular

machinery. During evolution transposons or transposon-derived sequences occasionally

adopted structural or novel cis-regulatory functions, thereby contributing to the evolution of

new, species-specific, phenotypic traits [19–21]. Genomic insulators are a particular class of

such novel, fast evolving, cis-regulatory elements that show signs of transposon ancestry

[22,23]. A strong expansion of these elements is observed in arthropods, which also experi-

enced a successive gain in the number of insulator binding proteins during evolution [24]. In

fact, the Drosophila genome harbours a large variety of insulator proteins such as CTCF,

BEAF-32, Su(Hw), Mod(mdg4) and CP190, which all affect nuclear architecture [25]. Differ-

ent Drosophila species underwent multiple genomic rearrangements and transposon inva-

sions [26,27], which presumably resulted in an adaptive response of regulatory DNA binding

factors to maintain spatial and temporal gene expression. For example, binding sites for the

insulator proteins BEAF-32 and CTCF show a high degree of variability when compared

among very closely related species [26,27]. The gain of new insulator sites is associated with

chromosome rearrangements, new born genes and species-specific transcription regulation

[19,23]. Similar to insulator proteins, which tend to cluster in specific nuclear regions [28],

the speciation factor HMR clusters at centromeres or pericentromeric regions in diploid

cells [3,6] but is also detected at distinct euchromatic regions along the chromosome arms in

polytene chromosomes [3]. A unifying feature for many of these sites is their close proximity

to binding sits of the Heterochromatin Protein 1 (HP1a), a HMR interactor and a well-char-

acterized heterochromatic mark.

Various studies describe HMR’s localization to heterochromatin, but the molecular

details on HMR’s binding sites and its recruitment to these sites are not well understood. To

get new insights into HMR’s association to chromatin, we measured HMR’s genome-wide

localization by chromatin immunoprecipitation (ChIP) in the D. melanogaster embryonic S2

cell line. We demonstrate an extensive colocalization of HMR with a subset of insulator sites

across the genome. HMR’s binding to genomic gypsy insulators, which constitute the major

group of its binding sites, is dependent on the residing insulator protein complex. In a sec-

ond group, HMR borders heterochromatin together with the insulator protein BEAF-32. In

agreement with previous low-resolution techniques in cell lines and fly tissue [3], these bind-

ing sites are enriched at pericentromeric regions, the cytological region 31 on the 2nd chro-

mosome and the entire 4th chromosome. At most of these sites, HMR associates to the

promoters of actively transcribed genes. Interestingly, these genes code for transcripts that

have been reported to be downregulated in Hmr mutant larvae and ovaries. Altogether, our

data provide evidence for a functional link between HMR and insulator proteins, which

potentially results in hybrid incompatibilities due to the adaptive evolution of these genome-

organizing complexes.

The Drosophila speciation factor HMR localizes to genomic insulator sites
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Materials and methods

Cell culture and RNAi

D. melanogaster S2-DRSC cells were obtained from the DGRC and grown at 26˚C in Schnei-

der’s Drosophila medium (Invitrogen) supplemented with 10% fetal calf serum and antibiotics

(100 units/mL penicillin and 100 μg/mL streptomycin).

For RNAi experiments cells were incubated in serum-free medium containing 10 mg/mL

dsRNA. After 1 hr of incubation, the serum-containing medium was supplied. Samples were

taken after 7 days. The dsRNA was prepared using the MEGAScript T7 Transcription Kit

(Thermo Fisher Scientific) following the manufacturers instructions with primers listed in S1

Table.

Chromatin immunoprecipitation, Real-Time PCR and sequencing

For chromatin immunoprecipitation (ChIP) cells were crosslinked with 1% formaldehyde for

5 min at room temperature. Upon cell lysis, protease inhibitors and proteasome inhibitor MG-

132 (Enzo Life Sciences) were applied. The chromatin was isolated and sheared with adaptive

focused acoustics (Covaris) to an average size of 200 base pair (bp). For each ChIP reaction,

chromatin isolated from 1–2 x 106 cells was incubated with following antibodies precoupled to

Protein A/G Sepharose: rat anti-HMR 2C10 (RRID: AB2569849) [3] with rabbit IgG anti-rat

IgG (RRID: AB2339804), mouse anti-HP1a C1A9 (RRID: AB528276) [29], rabbit anti-H3

(RRID: AB302613), rabbit anti-H3K9me3 (RRID:AB2532132) and mouse anti-FLAG (RRID:

AB262044). Real-Time PCR was performed with Fast SYBR Green master mix (Applied Bio-

systems) using a LightCycler 480 II (Roche). For deep sequencing, all libraries were prepared

using MicroPlex (Diagenode) or NEBNext (NEB) Library Preparation kit and single-end, 50

bp sequenced with the Illumina HiSeq2000. An overview of all ChIP-Seq samples used and the

number of uniquely aligned sequence reads is provided as S2 Table. A list of HMR peaks used

for further analyses is provided as S3 Table. All sequencing data are publicly available as

described below.

Data analysis

The raw reads were aligned to the D. melanogaster genome assembly (dm3) using Bowtie 2.2.6

with unique mapping criteria and exclusion of chromosome Uextra [30]. The raw read quality

was accessed using FASTQC 11.5 [31] and read filtering was performed using FastX 0.0.13

[32]. Sequencing tracks were visualized using IGB [33] and IGV [34] genome viewers. Peak

calling, motif search and peak annotation were performed using HOMER 4.8 with peak size of

200 bp [35] and ChIPseeks implementation of HOMER [36]. For downstream analysis, peaks

identified in two out of three biological replicates were taken. Downstream analysis steps were

performed using Python and R and parts of data preprocessing was done using ChipPeakAnno

[37]. For repeat analysis, reads from ChIP-Seq experiments were mapped to RepBase version

19.10 [38] using Bowtie [30]. Only unique reads were kept for analysis. For each repetitive ele-

ment, the log2 fold change was calculated. Following genome-wide binding data sets derived

from S2 cells (unless stated otherwise) were used: CP190, Su(Hw), CTCF and mod(mdg4)

from GEO GSE41354 [39], BEAF-32 from GEO GSE32815 [40]. RNA expression data for

untreated S2 cells was taken from GEO GSE46020. For D. melanogaster larvae and ovaries,

RNA-Seq data were taken from NCBI BioProject PRJNA236022 [4] and analyses were per-

formed with cuffdiff 2 [41]. An extended description of the bioinformatics tools and methods

used is provided in S1 Methods.

The Drosophila speciation factor HMR localizes to genomic insulator sites
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Western blot analysis

Samples were boiled in loading buffer, separated on SDS-PAGE gels (Serva), processed for

western blot using standard protocols and detected using rat anti-HMR 2C10 (1:20) (RRID:

AB2569849), rabbit anti-CP190 (RRID: AB2615894) [42], rabbit anti-H3K9me3 (1:2000)

(RRID:AB2532132) and mouse anti-Tubulin (1:800) (RRID: AB2241150) antibodies. Second-

ary antibodies included sheep anti-mouse (1:5000) (RRID: AB772210), goat anti-rat (1:5000)

(RRID: AB772207), donkey anti-rabbit (1:5000) (RRID: AB772206) coupled to horseradish

peroxidase.

Data access

ChIP-Seq data from this study are publicly available at NCBI GEO (GSE86106).

Results

Genome-wide binding map of HMR in D. melanogaster

Immunohistological studies revealed a binding of HMR to centromeric or pericentromeric

regions in diploid cells and to several euchromatic and telomeric regions in polytene chromo-

somes [3,6]. However, detailed information on HMR’s binding to chromatin was so far lack-

ing. To better understand the molecular mechanisms that govern HMR’s binding within the

genome, we mapped the genomic binding sites of HMR in cultured D. melanogaster S2 cells.

We used a highly specific monoclonal antibody against HMR [3] to purify associated chroma-

tin followed by next generation sequencing (ChIP-Seq) and derived a set of 794 HMR binding

sites, which were present in at least two out of three biological replicates (Fig 1A). A composite

plot of all HMR binding sites found in the genome revealed a sharp peak of HMR binding

with a width of approximately 200 nucleotides, which is reminiscent of sequence specific tran-

scription factors (Fig 1B). To validate the identified HMR binding sites, we applied multiple

strategies. First, we measured enrichment of the HMR binding sites in ChIP experiment using

an anti-FLAG antibody, an epitope that is not expressed in wild type cells (Fig 1B and S1A

Fig). Second, we performed RNAi knock-down experiments to reduce HMR protein level and

compared the enrichment of HMR between HMR RNAi treated cells and Control (Ctrl) RNAi

treated cells. Although we observe an overall reduction of HMR binding at most HMR peaks

(S1B Fig), we rarely see a complete loss of binding despite the high efficiency of the HMR

knock-down. This apparent discrepancy suggests that chromatin-bound HMR is rather resis-

tant towards a RNAi-mediated removal. The existence of such RNAi-resistant binding sites in

ChIP experiments has been observed before and was attributed to high-affinity binding sites

[43] or an incomplete removal of the chromatin-bound factors. Third, we used the CRISPR/

cas9 system to edit the HMR locus in S2 cells such that the cell line exclusively expresses an

HMR allele, which carries a double FLAG-tag at the C-terminus. ChIP-qPCR using HMR and

FLAG antibody in wild type and HMR-Flag2 expressing cells showed specific and reproducible

enrichment of HMR at selected HMR binding sites (S1C Fig).

We find HMR binding sites on all chromosomes and distributed along the whole chromo-

some arms with a marked increase in peak density at pericentromeric regions and at the 4th

chromosome where we also observe a higher density of binding sites for HP1a, a known inter-

action partner of HMR [3,4] (Fig 1C and S1D Fig). Unfortunately, the centromeric regions are

not present in the current Drosophila genome assembly, preventing read mapping and analysis

in this area of the genome. However, the increased number of peaks at pericentromeric regions

(S1D Fig) is consistent with the strong centromeric HMR signal we previously observed when

staining S2 cells with an anti-HMR antibody [3]. Besides the pericentromeric region, we also

The Drosophila speciation factor HMR localizes to genomic insulator sites
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Fig 1. Identification of HMR binding sites in D. melanogaster S2 cells. (A) Venn diagram of HMR peaks showing the number

of peaks identified in three independent biological replicates. Peaks identified in at least two out of three replicates were used for

further analysis and are highlighted in grey. (B) Composite analysis of HMR and control IgG (anti-FLAG) ChIP signals at genomic

HMR peak positions. (C) Histogram of HMR peak density across the left arm (2L) and right arm (2R) of the 2nd chromosome. The

cytological region 31 and centromere-proximal regions are indicated (D) Genome browser view of HMR, HP1a and control IgG

(anti-FLAG) ChIP signals at region 31. HMR ChIP signals obtained upon knock-down using control RNAi and HMR RNAi are

shown with the same amplitude.

doi:10.1371/journal.pone.0171798.g001
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observe a strong clustering of HMR peaks at the cytological region 31 on the left arm of the

second chromosome where we also see HMR binding in polytene chromosomes [3]. Interest-

ingly, HMR binding sites within these regions do not completely overlap with HP1a bound

regions but rather localize at their edges (Fig 1D).

HMR binding sites largely overlap with genomic insulator sites

We next asked whether HMR binding sites are enriched for specific DNA sequence motifs. A

motif analysis of HMR-bound regions revealed three DNA sequence motifs that were signifi-

cantly enriched and present in up to 26% of all HMR peaks (Fig 2A). These motifs are highly

related to the recognition motifs of the insulator DNA binding proteins Su(Hw) and BEAF-32

(S2A Fig), both containing a zinc-finger DNA-binding domain [44,45], suggesting that HMR

binds to insulator regions. Indeed, we observe a substantial overlap of our HMR binding pro-

files with the published ones of known insulator proteins such as CP190, Mod(mdg4), Su

(Hw), CTCF and BEAF32 [39,43] (Fig 2B and S2B Fig). Insulator binding sites can be subclas-

sified depending on their composition of known insulator proteins [43]. One of the best char-

acterized family of insulators are derived from the gypsy retrotransposon and are strongly

bound by Su(Hw), Mod(mdg4) and CP190 [46–48]. Consistent with the strong enrichment of

Su(Hw)-recognition motifs in the binding sites of HMR, we find about half of all HMR sites

belonging to this gypsy-like family of insulators (Fig 2B). However, only 7% of all Su(Hw)

binding sites and 11% of gypsy-like elements classified as bound by Su(Hw), Mod(mdg4) and

CP190 are also bound by HMR.

Given the extensive colocalization of HMR with non-repetitive gypsy-like insulators (Fig

2C) and the effect of a Hmr mutations on the expression of retrotransposons [3,4], we won-

dered whether HMR is also enriched at repetitive DNA. We therefore mapped sequences

obtained from our ChIP-Seq experiments using anti-HMR and anti-HP1a antibodies as well

as published binding profiles for Su(Hw), Mod(mdg4)2.2 and CP190 [39] against the RepBase

repeat database [38]. In agreement with previous studies we observe a strong enrichment of

HP1a at the centromeric heterochromatin-associated Dodeca satellite (DMSAT6) [49] and the

transposable elements Rt1a and Rt1b (DMRT1A, DMRT1B) [50] (S2C Fig). In contrast to

HP1a, the only repetitive elements that show a substantial enrichment for HMR are the retro-

transposons gypsy, and gtwin (Fig 3A). At these elements HMR binds together with Su(Hw),

Mod(mdg4) and CP190 to the 5’ insulator region (Fig 3B and S2D Fig).

A key element for the formation of insulator complexes at gypsy-like elements is the pres-

ence of the CP190 adaptor protein. A reduction of CP190 levels has been shown to strongly

affect binding of insulator proteins to these elements but not to others [43]. To test whether

CP190 also impacts the binding of HMR to gypsy-like binding sites, we performed RNAi

knock-down experiments to reduce CP190 protein level (Fig 4A) and measured HMR binding.

Strikingly, we observe a substantial reduction of HMR binding only for the gypsy-like group of

binding sites (Fig 4B and 4C), suggesting that HMR’s binding to the gypsy-like insulator class

is indeed dependent on CP190. A HMR RNAi knock-down in contrast affects HMR binding

equally in both classes (Fig 4D and S3 Fig). As insulator sites are known to contain less nucleo-

somes [51], nucleosome occupancy can serve as a proxy for insulator complex integrity at

these sites [43]. We therefore performed a Histone H3 ChIP upon CP190 RNAi knock-down

to monitor changes in insulator complex integrity [52]. Consistent with the importance of

CP190 for maintaining the gypsy insulator, nucleosome occupancy only increases in the gypsy-

like HMR binding sites (Fig 4C). Taken together, these results demonstrate an extensive colo-

calization of HMR with genomic insulator proteins, which play an important role in mediating

its binding to chromatin.

The Drosophila speciation factor HMR localizes to genomic insulator sites
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Fig 2. HMR localizes to genomic insulators and the gypsy transposon. (A) Sequence motifs identified

within HMR peak regions. The corresponding motif logo, p-value of enrichment, percentage of regions with

this motif and putative binding factors are indicated. Dashed arrows mark the sequence that matches the

published binding sites of Su(Hw) and BEAF-32 (see also S2A Fig) (B) Peak overlap of HMR with peaks of

the insulator proteins CP190, Mod(mdg4), Su(Hw), CTCF [39] and BEAF-32 [40]. The number of HMR peaks

is indicated depending on their colocalization with known boundary factors. Groups with less than 11

members are not displayed. Su(Hw)-containing gypsy-like groups are depicted in green, non gypsy-like

groups in orange. Combinations that contain less than ten HMR peaks are not shown. (C) Genome browser

view of the Su(Hw) binding region 1A-2. ChIP signals of HMR and known gypsy binding factors are shown.

The 1A-2 insulator is highlighted in green.

doi:10.1371/journal.pone.0171798.g002
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HMR borders HP1a domains at active promoters

Although a large portion of HMR binding sites is associated with gyspy and gypsy-like insula-

tors, there is a considerable number of HMR-bound peaks that do not localize with Su(Hw),

Mod(mdg4) and CP190 (Fig 4B). We noticed that many of these non gypsy-like sites are in

close proximity to HP1a bound regions (Fig 1D). Indeed, when we sorted all HMR peaks

according to the presence of HP1a in their proximity, we observed an almost complete lack of

gypsy insulator binding proteins at these sites (Fig 5A). Consistent with the lack of Su(Hw)

binding to this class of HMR peaks, a motif search revealed no enrichment of the Su(Hw) rec-

ognition site among those peaks but rather an enrichment for BEAF-32 binding sites (Fig 5B).

To better understand a possible role of HMR at these sites, which we termed class 1 binding

sites, we analyzed them with regards to their annotation. Interestingly, almost all HP1a-associ-

ated HMR binding sites (90%) are in close proximity to transcriptional start sites (TSS),

whereas the other HMR binding sites show a somewhat broader distribution among various

functional elements (Fig 5C). Strikingly, HMR binds very closely to the TSS at the boundary

between HP1a containing domains and the gene body (S4A Fig). The genes in proximity of

these HMR binding sites are classified as transcriptionally active suggesting that HMR might

prevent the repressive influence of HP1a on neighbouring genes (Fig 5D). To investigate

whether HMR loss has an impact on HP1a or H3K9me3 domains at these genomic regions,

we performed HP1a ChIP and H3K9me3 ChIP upon HMR knockdown. However, we could

not confirm extensive spreading of the heterochromatin marks HP1a or H3K9me3 after HMR

loss (S4C and S4D Fig). Nevertheless, the genes associated with this class of HMR binding sites

are transcriptionally down-regulated in Hmr mutant larvae and ovaries (Fig 5E, S4E Fig and

[5]). This seems to be particularly important within regions that are rich in heterochromatin

such as the 4th chromosome or the pericentromeric regions where we find the class of HP1a-

associated binding sites highly enriched (Fig 5F). In summary, we can classify HMR’s genomic

binding sites into two groups: One being associated with gypsy insulators, and another one

associated with active promoters in pericentromeric heterochromatin where HMR borders

Fig 3. HMR localisation to repetitive elements. (A) HMR ChIP tag enrichment at repetitive DNA elements.

To identify enriched sequences the enrichment (log2-fold) over input is plotted against the RPKM of an

individual repeat sequence from RepBase. Repeats with less than 2-fold enrichment are not displayed. (B)

ChIP tag density of HMR and the gypsy-insulator proteins CP190, Mod(mdg4), Su(Hw) [39] across the

repetitive gypsy retrotransposon sequence. The gypsy insulator sequence at the 5’ end is highlighted in

green.

doi:10.1371/journal.pone.0171798.g003

The Drosophila speciation factor HMR localizes to genomic insulator sites
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Fig 4. HMR genomic localization to gypsy-like insulator sites is dependent on CP190. (A) Western Blot of cell lysates

after treatment with specific and control dsRNA shows an efficient knock-down of HMR and CP190. (B) Venn diagram of the

overlap between HMR, CP190, Mod(mdg4) and Su(Hw) peaks [39] classifying HMR peaks as gypsy-like (highlighted in green)

and non gypsy-like (highlighted in orange). (C) Composite analysis of HMR ChIP signals and Histone H3 ChIP signals at

genomic HMR peak positions according to the groups defined in (B). (D) Quantification of the fold-change of HMR ChIP

enrichment upon CP190 RNAi and HMR RNAi. Box plots represent the fold-change of normalized HMR ChIP tag number

aligned to 200 bp wide HMR peak regions. Peak regions with less than 50 aligned tags were excluded from the analysis.

Significance of difference was estimated with p-values calculated with Wilcoxon rank sum test [72].

doi:10.1371/journal.pone.0171798.g004

The Drosophila speciation factor HMR localizes to genomic insulator sites

PLOS ONE | DOI:10.1371/journal.pone.0171798 February 16, 2017 9 / 18



Fig 5. HMR borders HP1a together with BEAF-32 at the TSS of actively transcribed genes and

enhances their transcription. (A) Heatmaps of HMR, HP1a, BEAF-32 [40], Su(Hw), Mod(mdg4), CP190

and CTCF [39] ChIP signals. All signals are centered around the HMR binding sites, clustered according to

adjacent HP1a signals and sorted by HMR intensity. (B) Sequence motifs identified within HMR peak regions

from class 1 and class 2 based on HOMER motif analysis. The corresponding motif logo, p-value of

enrichment, percentage of regions with this motif, and putative binding factors are indicated. Dashed arrows

The Drosophila speciation factor HMR localizes to genomic insulator sites
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HP1a-containing chromatin regions together with BEAF-32 and potentially promotes gene

transcription.

Discussion

HMR localizes to centromeric and pericentromeric regions in D. melanogaster cell lines as well

as in mitotically dividing embryonic cells where it has been suggested to act as a repressor of

transposable elements [3–5]. Mutations in Hmr lead to overexpression of satellite DNA and

transposable elements in ovaries and larvae [4]. Such a derepression is also observed in hybrid

flies [53], where HMR and LHR levels are higher than the ones in pure species and result in a

widespread distribution of the HMR/LHR complex [3]. To better understand the targeting

principles that mediate HMR binding within the D. melanogaster genome, we wondered

whether we could identify HMR binding sites by applying ChIP-Seq in the D. melanogaster S2

cell line. Combining this approach with RNAi mediated knockdown experiments we uncover

a strong colocalization of HMR with gypsy insulator binding sites and demonstrate that HMR

binding to these sites depends on the presence of the residing insulator protein complex. Nota-

bly, HMR associates only with a subset of all Su(Hw) binding sites, but almost all those sites

can be classified as gypsy-like sites bound by CP190 and mod(mdg4) in addition to Su(Hw).

Besides dispersed binding of HMR at genomic gypsy insulator sites along the chromosome

arms, we observe dense clusters of HMR binding sites around the centromere and on the 4th

chromosome where it potentially serves to separate HP1a binding domains from highly active

genes. This dense clustering of binding sites around the centromere correlates well with the

strong colocalization of HMR signals with the centromeric H3 variant CID in immunolocali-

zation experiments [3]. Due to its biochemical interaction and partial colocalization with the

heterochromatin protein HP1a in Drosophila embryos, HMR has been suggested to be a bona-
fide heterochromatin component [3,4,6,54]. However, in contrast to HP1a, we detect very dis-

tinct HMR binding sites within the genome. When we find HMR close to an HP1a binding

domain, it rather borders it than covering the whole domain. The sharp HMR binding signals

and the fact that almost all euchromatic HMR binding sites contain putative insulator ele-

ments, suggest a role of HMR in separating chromatin domains. A distinct boundary that sepa-

rates constitutive heterochromatin from the core centromere has also been postulated by

Olszak and colleagues who suggest that transition zones between heterochromatin and

euchromatin are hotspots for sites of CID misincorporation [55]. Unfortunately, centromeres

are notoriously difficult to study by next generation sequencing due to their highly repetitive

nature [56,57]. In addition, the microscopic resolution is not sufficiently high to allow a dis-

tinction between a binding to the core centromere chromatin and the chromatin immediately

adjacent to it. Therefore, we cannot rule out the possibility that HMR binds large domains at

the central region of the Drosophila centromere. However, the fact that the purification of

mark the sequence that matches the published binding sites of Su(Hw) and BEAF-32 (see also S2A Fig). (C)

Distribution of class 1 and class 2 HMR peaks among various genomic landmarks. (D) Box plot showing the

normalized RNA expression of all genes and HMR-bound genes (promoter/TSS annotated) in class 1 and in

class 2. S2 cells RNA expression levels were used according to [73]. Significance of difference was estimated

with p-values calculated with Wilcoxon signed rank test [72]. (E) Box plot showing the log2 fold change of

protein coding gene transcripts of all analyzed genes and HMR-bound genes (promoter/TSS annotated) in

class 1 and in class 2 comparing Hmr mutant against wild type flies. The RNA-Seq data comes from

experiments done in D. melanogaster ovaries [4]. Significance of difference was estimated with p-values

calculated with Wilcoxon rank sum test [72]. For both box plots the box represents the interval that contains

the central 50% of the data with the line indicating the median. The length of the whiskers is 1.5 times the

interquartile distance (IQD). (F) Histogram showing HMR peak density across the annotated D. melanogaster

genome. Class 1 HMR binding sites are enriched at region 31, centromere-proximal regions and the 4th

chromosome.

doi:10.1371/journal.pone.0171798.g005
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chromatin containing the centromeric H3 variant CID did not identify HMR [58], suggests

that it may very well also form a boundary between pericentromeric heterochromatin and the

core centromere. To which extent and by which mechanism HMR fulfils a functional role at

these genomic sites remains to be elucidated.

The genomic sites, where we find HMR bound next to an HP1a domain, are highly

enriched for recognition sites of the insulator protein BEAF-32. Interestingly, a depletion of

BEAF-32 in S2 cells results in an increased rate of mitotic defects [45], which is very reminis-

cent of the phenotype detected when HMR is depleted [3]. Similarly to flies carrying a muta-

tion in the Hmr gene, flies in which BEAF-32 is only contributed maternally have defects in

female fertility [59,60]. BEAF-32’s role in maintaining associated promoter regions in an envi-

ronment that facilitates high transcription levels [61] has been suggested to be functionally rel-

evant for this phenotype [45]. Strikingly, we find most HMR/BEAF-32 binding sites located

between HP1a containing heterochromatin and the transcription start site of a highly active

gene. HP1a chromatin might fulfil a repressive function at these genomic regions and HMR

might block this repressive impact on the neighbouring gene body. However, we do not see

extensive spreading of HP1a or H3K9me3 upon HMR knockdown suggesting that the repres-

sive effect is not directly mediated by HP1a binding or the HMR knock down not efficient

enough. As there is evidence that HP1a can also promote gene transcription [62], HMR may

also function as a co-activator for HP1a. Currently, we therefore consider HMR binding next

to HP1a containing chromatin as a unifying feature of transcriptionally affected genes but can

only speculate about potential mechanism by which HMR exerts its function.

Although HMR depletion has a substantial effect on the transcription of multiple transpo-

sons, we find HMR only enriched at the 5’ insulator region of the gypsy or gtwin retrotranspo-

sons and to similar sites within the genome that are presumably derived from these elements.

These sites are occupied by insulator proteins Su(Hw), CP190 and Mod(mdg4) and often dis-

play enhancer blocking activity in transgenic assays [43,63–65]. Artificial targeting of HMR to

DNA placed between an enhancer and a promoter of a reporter gene can block the transcrip-

tion activity [3], suggesting that HMR may indeed play a role in setting up endogenous bound-

ary elements. Similar to what is known for Su(Hw), HMR binding to this class of binding sites

is dependent on the presence of the structural protein CP190, which has a key function in the

stabilization of insulator protein complexes [22]. However, as we do not observe a strong phys-

ical interaction between CP190 and HMR, the loss of HMR binding upon a reduction of

CP190 levels may also be the result of increased nucleosome occupancy. Such increase in His-

tone H3 binding cannot be observed upon HMR removal suggesting that HMR acts down-

stream of CP190. Interestingly, CP190 loss impairs HMR binding to gypsy-like insulator sites

but has weak effect on HMR binding to sites containing BEAF-32 recognition motifs. Notably,

in contrast to BEAF-32, CP190 is not required for oogenesis [66], suggesting that the lack of

HMR binding to the class 1 sites may be responsible for the female sterility phenotype

observed in Hmr mutant flies.

How can we integrate our findings with the lethal phenotype of increased HMR/LHR levels

in male hybrids? It is tempting to speculate that multiple additional binding sites that are

observed in hybrids and on polytene chromosomes of fly strains over-expressing HMR [3]

constitute boundary regions. An increased binding to such boundaries, which have been

shown to cluster and form aggregates in vivo [48,67,68], may trigger a massive change in

nuclear architecture. In turn, this could indirectly activate multiple transposable elements sim-

ilar to what is observed when centromere clustering is disturbed [69]. Such a disturbed nuclear

architecture may then trigger the activation of a cell cycle checkpoint which has been previ-

ously suggested to be a major cause of hybrid lethality [70,71].

The Drosophila speciation factor HMR localizes to genomic insulator sites

PLOS ONE | DOI:10.1371/journal.pone.0171798 February 16, 2017 12 / 18



Altogether, our data provide a novel link between HMR and cis-regulatory elements bound

by insulator proteins. We speculate that divergent evolution of such genomic elements and

their corresponding binding factors in sibling species is triggering hybrid incompatibilities.

Supporting information

S1 Fig. Control experiments of HMR ChIP-Seq studies. (A) Venn diagram showing the lack

of overlap between HMR peaks (peaks identified in at least two out of three independent bio-

logical replicates, highlighted in grey) and control IgG (anti-FLAG) ChIP peaks (pool of peaks

from two independent biological replicates). (B) Changes in HMR ChIP enrichment upon

HMR RNAi versus a control RNAi (GST) in two biological replicates. Each data point repre-

sents a mapped HMR peak. The scatter plot on the left displays fold changes of normalized

HMR ChIP tag number mapped to a 200 bp HMR peak region in two biological replicates.

Peak regions with less than 50 aligned tags were excluded from the analysis. The histogram on

the right shows the frequency of peaks displaying a reduction of HMR binding upon knock-

down. Shown are average values of replicate 1 and replicate 2. (C) ChIP-qPCR showing spe-

cific HMR enrichment at HMR binding sites. HMR ChIP is enriched for HMR binding sites

in both wild type and HMR-Flag2 expressing cells. FLAG ChIP is enriched for HMR binding

sites only in HMR-Flag2 expressing cells but not in wild type cells lacking the Flag2 epitope.

Data are represented as mean ± SD of three technical replicates. (D) Genome browser view of

HMR ChIP, HP1a ChIP and control IgG ChIP signal at a large centromere-proximal region at

the right arm of the 2nd chromosome.

(TIF)

S2 Fig. Overlap of HMR binding sites with known insulator regions and repetitive DNA.

(A) Sequence motifs identified within Su(Hw) [39] and BEAF-32 [40] peak regions. The corre-

sponding motif logo, p-value of enrichment and percentage of regions with this motif are indi-

cated. Dashed arrows mark the sequence that matches the published binding sites of Su(Hw)

and BEAF-32. (B) Genome browser view of ChIP signals showing combinatoric binding pat-

tern for HMR and the insulator proteins CP190, Mod(mdg4), Su(Hw), CTCF [39] and BEAF-

32 [40]. (C) Su(Hw) and HP1a ChIP tag enrichment at repetitive DNA elements. Each point in

the scatter plot represents the enrichment (log2 fold) over input and the RPKM of an individ-

ual repeat from Repbase. Repeats with less than 2-fold enrichment are not displayed. (D) ChIP

tag density of HMR and the gypsy-insulator proteins CP190, Mod(mdg4), Su(Hw) [39] across

the gypsy-twin repeat.

(TIF)

S3 Fig. Selective effect of CP190 RNAi on HMR binding to gypsy-like elements. Composite

analysis of HMR ChIP signal and Histone H3 ChIP signal at genomic HMR peak positions

according to the groups defined in Fig 4B. The ChIP signals were obtained upon control RNAi

and HMR RNAi. The HMR ChIP signals are similarly affected in both groups, whereas His-

tone H3 ChIP signals are retained.

(TIF)

S4 Fig. Additional information for HP1a-associated HMR binding sites. (A) Composite

analysis of HMR, HP1a and BEAF-32 ChIP signals at class 1 genomic sites relative to the tran-

scriptional start site (TSS) and the gene body. Shown are normalised and scaled read density

plots (B) Peak overlap of HMR with peaks of the insulator proteins CP190, Mod(mdg4), Su

(Hw), CTCF [39] and BEAF-32 [40] for class 1 and for class 2 HMR binding sites. (C) Com-

posite analysis of HP1a and H3K9me3 ChIP signals at class 1 HMR binding sites after HMR

knockdown. Class 1 is defined in Fig 5A but oriented according to HP1a ChIP signal. (D)
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Western Blot analysis on cell lysates to assay protein levels after HMR knockdown. Tubulin

protein detection served as control. (E) Same as described in Fig 5E, but the RNA-Seq data

comes from experiments done in D. melanogaster male larvae [4].

(TIF)

S1 Table. List of primers used for CRISPR/cas9 genome editing, RNAi experiments and

ChIP Real-Time PCR. List of primers used in this study. Primers used in ChIP Real-Time

PCR were designed with help of Primer3.

(DOCX)

S2 Table. ChIP-Seq sample overview and number of uniquely aligned sequence reads.

ChIP-Seq sample overview and number of uniquely aligned sequence reads. The percentage of

uniquely mapped reads in ChIP-Seq experiments can largely vary and depends on the nature

of the ChIPed protein. Proteins that bind repetitive regions (such as HMR or HP1a) give sub-

stantially lower percentages of uniquely mapped reads.

(DOCX)

S3 Table. HMR peaks used for downstream analysis. HMR peak list derived from HOMER

peak calling on three biological replicates (Fig 1A). First three columns provide information

on the peak position within the genome (chromosome, peak start and end using dm3), fol-

lowed by peak annotation obtained from ChIPseeks implementation of HOMER (Fig 5C) and

classification according to adjacent HP1a signals (Fig 5A).

(XLSX)

S1 Methods. Supporting information on methods. Hmr gene editing using CRISPR/cas9,

extended ChIP Real-Time PCR methods, extended ChIP-seq data analysis methods.

(DOCX)
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