1,874 research outputs found

    Evaluating the effects of different mitigation strategies on the warm thermal environment of an urban square in Athens, Greece

    Get PDF
    The present study examines the effect of different mitigation strategies on the microclimate and thermal sensation in an urban open area in Athens. The microclimatic model ENVI-met was applied to simulate thermal conditions for a warm summer day (15.07.2010). Thermal conditions were assessed based on air temperature and the Mediterranean thermal sensation scales of the Physiologically Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI). The spatial and temporal resolution of PET throughout the square was developed per design scenario and was compared to the Current design layout to analyse and quantify the effectiveness of the mitigation strategies on the amelioration of thermal conditions. Results showed that the combination of the design scenarios was found to be the most advantageous mitigation strategy. The average PET and UTCI reduction of 6.9 °C and 6.1 °C, respectively, achieved a 15.5% improvement in thermal comfort. The aim of this research was to set specific targets on thermal sensation improvement and, based on the obtained results, it suggests certain mitigation strategies that will allow the specification of the appropriate microclimatic interventions to improve thermal comfort to the desired extent in the context of developing urban design guidelines

    Out of equilibrium quantum field dynamics of an initial thermal state after a change in the external field

    Full text link
    The effects of the initial temperature in the out of equilibrium quantum field dynamics in the presence of an homogeneous external field are investigated. We consider an initial thermal state of temperature T for a constant external field J. A subsequent sign flip of the external field, J to -J, gives rise to an out of equilibrium nonperturbative quantum field dynamics. The dynamics is studied here for the symmetry broken lambda(Phi^2)^2 scalar N component field theory in the large N limit. We find a dynamical effective potential for the expectation value that helps to understand the dynamics. The dynamics presents two regimes defined by the presence or absence of a temporal trapping close to the metastable equilibrium position of the potential. The two regimes are separated by a critical value of the external field that depends on the initial temperature. The temporal trapping is shorter for larger initial temperatures or larger external fields. Parametric resonances and spinodal instabilities amplify the quantum fluctuations in the field components transverse to the external field. When there is a temporal trapping this is the main mechanism that allows the system to escape from the metastable state for large N. Subsequently backreaction stops the growth of the quantum fluctuations and the system enters a quasiperiodic regime.Comment: LaTeX, 19 pages, 12 .eps figures, improved version to appear in Phys Rev

    Θ\Theta vacua states in heavy ion collisions in presence of dissipation and noise

    Full text link
    We have studied possible formation of Θ\Theta vacua states in heavy ion collisions. Random phases of the chiral fields were evolved in a finite temperature potential, incorporating the breaking of UA(1)U_A(1) symmetry. Initial random phases very quickly settle into oscillation around the values dictated by the potential. The simulation study indicate that an initial Θ\Theta=0 state do not evolve into a Θ\Theta \neq 0 state. However, an initial Θ\Theta \neq 0 state, if formed in heavy ion collision, can survive, as a coherent superposition of a number of modes.Comment: 6 pages, 6 figure

    Bremsstrahlung from an Equilibrating Quark-Gluon Plasma

    Get PDF
    The photon production rate from a chemically equilibrating quark-gluon plasma likely to be produced at RHIC (BNL) and LHC (CERN) energies is estimated taking into account bremsstrahlung. The plasma is assumed to be in local thermal equilibrium, but with a phase space distribution that deviates from the Fermi or Bose distribution by space-time dependent factors (fugacities). The photon spectrum is obtained by integrating the photon rate over the space-time history of the plasma, adopting a boost invariant cylindrically symmetric transverse expansion of the system with different nuclear profile functions. Initial conditions obtained from a self-screened parton cascade calculation and, for comparison, from the HIJING model are used. Compared to an equilibrated plasma at the same initial energy density, taken from the self-screened parton cascade, a moderate suppression of the photon yield by a factor of one to five depending on the collision energy and the photon momentum is observed. The individual contributions to the photon production, however, are completely different in the both scenarios.Comment: 14 pages, 4 figures, shortened version to be published in Phys. Rev.

    Screening of a Moving Parton in the Quark-Gluon Plasma

    Full text link
    The screening potential of a parton moving through a quark-gluon plasma is calculated using the semi-classical transport theory. An anisotropic potential showing a minimum in the direction of the parton velocity is found. As consequences possible new bound states and J/psi dissociation are discussed.Comment: 4 pages, 2 figures, final, extended version, to be published in Phys.Rev.

    Parton Equilibration in Relativistic Heavy Ion Collisions

    Get PDF
    We investigate the processes leading to phase-space equilibration of parton distributions in nuclear interactions at collider energies. We derive a set of rate equations describing the chemical equilibration of gluons and quarks including medium effects on the relevant QCD transport coefficients, and discuss their consequences for parton equilibration in heavy ion collisions.Comment: 18 pages, 6 Figures appended as uuencoded PostScript files, (no changes in the previously submitted manuscript), DUKE-TH-93-4

    The QGP phase in relativistic heavy-ion collisions

    Full text link
    The dynamics of partons, hadrons and strings in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results - including the partonic equation of state - in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. The PHSD approach is applied to nucleus-nucleus collisions from low SIS to RHIC energies. The traces of partonic interactions are found in particular in the elliptic flow of hadrons as well as in their transverse mass spectra.Comment: To be published by Springer in Proceedings of the International Symposium on `Exciting Physics', Makutsi-Range, South Africa, 13-20 November, 201

    Perturbation Theory with a Variational Basis: the Generalized Gaussian Effective Potential

    Get PDF
    The perturbation theory with a variational basis is constructed and analyzed.The generalized Gaussian effective potential is introduced and evaluated up to the second order for selfinteracting scalar fields in one and two spatial dimensions. The problem of the renormalization of the mass is discussed in details. Thermal corrections are incorporated. The comparison between the finite temperature generalized Gaussian effective potential and the finite temperature effective potential is critically analyzed. The phenomenon of the restoration at high temperature of the symmetry broken at zero temperature is discussed.Comment: RevTex, 49 pages, 16 eps figure

    Nuclear spin driven quantum relaxation in LiY_0.998Ho_0.002F_4

    Full text link
    Staircase hysteresis loops of the magnetization of a LiY_0.998Ho_0.002F_4 single crystal are observed at subkelvin temperatures and low field sweep rates. This behavior results from quantum dynamics at avoided level crossings of the energy spectrum of single Ho^{3+} ions in the presence of hyperfine interactions. Enhanced quantum relaxation in constant transverse fields allows the study of the relative magnitude of tunnel splittings. At faster sweep rates, non-equilibrated spin-phonon and spin-spin transitions, mediated by weak dipolar interactions, lead to magnetization oscillations and additional steps.Comment: 5 pages, 5 eps figures, using RevTe

    Energy Loss of a Heavy Fermion in an Anisotropic QED Plasma

    Full text link
    We compute the leading-order collisional energy loss of a heavy fermion propagating in a QED plasma with an electron distribution function which is anisotropic in momentum space. We show that in the presence of such anisotropies there can be a significant directional dependence of the heavy fermion energy loss with the effect being quite large for highly-relativistic velocities. We also repeat the analysis of the isotropic case more carefully and show that the final result depends on the intermediate scale used to separate hard and soft contributions to the energy loss. We then show that the canonical isotropic result is obtained in the weak-coupling limit. For intermediate-coupling we use the residual scale dependence as a measure of our theoretical uncertainty. We also discuss complications which could arise due to the presence of unstable soft photonic modes and demonstrate that the calculation of the energy loss is safe.Comment: 19 pages, 18 figures. v2 - Correction to normalization of numerical results; some figures modified as a result; discussion of role of unstable modes added along with two new figure
    corecore