13,547 research outputs found
DSIF station schedules
System manages Deep Space Instrumentation Facilities /DSIF/ equipment construction and modification planning. Versatile program applies to such tasks as employee time and task schedules, pay schedules, operations schedules, and plant and equipment procurement, construction, modification or service
Advanced indium antimonide monolithic charge coupled infrared imaging arrays
The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials
The Hodge ring of Kaehler manifolds
We determine the structure of the Hodge ring, a natural object encoding the
Hodge numbers of all compact Kaehler manifolds. As a consequence of this
structure, there are no unexpected relations among the Hodge numbers, and no
essential differences between the Hodge numbers of smooth complex projective
varieties and those of arbitrary Kaehler manifolds. The consideration of
certain natural ideals in the Hodge ring allows us to determine exactly which
linear combinations of Hodge numbers are birationally invariant, and which are
topological invariants. Combining the Hodge and unitary bordism rings, we are
also able to treat linear combinations of Hodge and Chern numbers. In
particular, this leads to a complete solution of a classical problem of
Hirzebruch's.Comment: Dedicated to the memory of F. Hirzebruch. To appear in Compositio
Mat
InSb charge coupled infrared imaging device: The 20 element linear imager
The design and fabrication of the 8585 InSb charge coupled infrared imaging device (CCIRID) chip are reported. The InSb material characteristics are described along with mask and process modifications. Test results for the 2- and 20-element CCIRID's are discussed, including gate oxide characteristics, charge transfer efficiency, optical mode of operation, and development of the surface potential diagram
Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems
We present results of a reconnaissance for stellar companions to all 131
radial-velocity-detected candidate extrasolar planetary systems known as of
July 1, 2005. CPM companions were investigated using the multi-epoch DSS
images, and confirmed by matching the trigonometric parallax distances of the
primaries to companion distances estimated photometrically. We also attempt to
confirm or refute companions listed in the Washington Double Star Catalog, the
Catalogs of Nearby Stars, in Hipparcos results, and in Duquennoy & Mayor
(1991).
Our findings indicate that a lower limit of 30 (23%) of the 131 exoplanet
systems have stellar companions. We report new stellar companions to HD 38529
and HD 188015, and a new candidate companion to HD 169830. We confirm many
previously reported stellar companions, including six stars in five systems
that are recognized for the first time as companions to exoplanet hosts. We
have found evidence that 20 entries in the Washington Double Star Catalog are
not gravitationally bound companions. At least three, and possibly five, of the
exoplanet systems reside in triple star systems. Three exoplanet systems have
potentially close-in stellar companions ~ 20 AU away from the primary. Finally,
two of the exoplanet systems contain white dwarf companions. This comprehensive
assessment of exoplanet systems indicates that solar systems are found in a
variety of stellar multiplicity environments - singles, binaries, and triples;
and that planets survive the post-main-sequence evolution of companion stars.Comment: 52 pages, 7 figures, Accepted for publication in Ap
Metastable Quantum Phase Transitions in a Periodic One-dimensional Bose Gas: Mean-Field and Bogoliubov Analyses
We generalize the concept of quantum phase transitions, which is
conventionally defined for a ground state and usually applied in the
thermodynamic limit, to one for \emph{metastable states} in \emph{finite size
systems}. In particular, we treat the one-dimensional Bose gas on a ring in the
presence of both interactions and rotation. To support our study, we bring to
bear mean-field theory, i.e., the nonlinear Schr\"odinger equation, and linear
perturbation or Bogoliubov-de Gennes theory. Both methods give a consistent
result in the weakly interacting regime: there exist \emph{two topologically
distinct quantum phases}. The first is the typical picture of superfluidity in
a Bose-Einstein condensate on a ring: average angular momentum is quantized and
the superflow is uniform. The second is new: one or more dark solitons appear
as stationary states, breaking the symmetry, the average angular momentum
becomes a continuous quantity, and the phase of the condensate can be
continuously wound and unwound
Catastrophic regime shifts in model ecological communities are true phase transitions
Ecosystems often undergo abrupt regime shifts in response to gradual external
changes. These shifts are theoretically understood as a regime switch between
alternative stable states of the ecosystem dynamical response to smooth changes
in external conditions. Usual models introduce nonlinearities in the
macroscopic dynamics of the ecosystem that lead to different stable attractors
among which the shift takes place. Here we propose an alternative explanation
of catastrophic regime shifts based on a recent model that pictures ecological
communities as systems in continuous fluctuation, according to certain
transition probabilities, between different micro-states in the phase space of
viable communities. We introduce a spontaneous extinction rate that accounts
for gradual changes in external conditions, and upon variations on this control
parameter the system undergoes a regime shift with similar features to those
previously reported. Under our microscopic viewpoint we recover the main
results obtained in previous theoretical and empirical work (anomalous
variance, hysteresis cycles, trophic cascades). The model predicts a gradual
loss of species in trophic levels from bottom to top near the transition. But
more importantly, the spectral analysis of the transition probability matrix
allows us to rigorously establish that we are observing the fingerprints, in a
finite size system, of a true phase transition driven by background
extinctions.Comment: 19 pages, 11 figures, revised versio
Stable States of Biological Organisms
A novel model of biological organisms is advanced, treating an organism as a
self-consistent system subject to a pathogen flux. The principal novelty of the
model is that it describes not some parts, but a biological organism as a
whole. The organism is modeled by a five-dimensional dynamical system. The
organism homeostasis is described by the evolution equations for five
interacting components: healthy cells, ill cells, innate immune cells, specific
immune cells, and pathogens. The stability analysis demonstrates that, in a
wide domain of the parameter space, the system exhibits robust structural
stability. There always exist four stable stationary solutions characterizing
four qualitatively differing states of the organism: alive state, boundary
state, critical state, and dead state.Comment: Latex file, 12 pages, 4 figure
- …
