34 research outputs found

    An inherited duplication at the gene p21 protein-activated Kinase 7 (PAK7) is a risk factor for psychosis

    Get PDF
    FUNDING Funding for this study was provided by the Wellcome Trust Case Control Consortium 2 project (085475/B/08/Z and 085475/Z/08/Z), the Wellcome Trust (072894/Z/03/Z, 090532/Z/09/Z and 075491/Z/04/B), NIMH grants (MH 41953 and MH083094) and Science Foundation Ireland (08/IN.1/B1916). We acknowledge use of the Trinity Biobank sample from the Irish Blood Transfusion Service; the Trinity Centre for High Performance Computing; British 1958 Birth Cohort DNA collection funded by the Medical Research Council (G0000934) and the Wellcome Trust (068545/Z/02) and of the UK National Blood Service controls funded by the Wellcome Trust. Chris Spencer is supported by a Wellcome Trust Career Development Fellowship (097364/Z/11/Z). Funding to pay the Open Access publication charges for this article was provided by the Wellcome Trust. ACKNOWLEDGEMENTS The authors sincerely thank all patients who contributed to this study and all staff who facilitated their involvement. We thank W. Bodmer and B. Winney for use of the People of the British Isles DNA collection, which was funded by the Wellcome Trust. We thank Akira Sawa and Koko Ishzuki for advice on the PAK7–DISC1 interaction experiment and Jan Korbel for discussions on mechanism of structural variation.Peer reviewedPublisher PD

    Comprehensive Gene-Based Association Study of a Chromosome 20 Linked Region Implicates Novel Risk Loci for Depressive Symptoms in Psychotic Illness

    Get PDF
    Background Prior genomewide scans of schizophrenia support evidence of linkage to regions of chromosome 20. However, association analyses have yet to provide support for any etiologically relevant variants. Methods We analyzed 2988 LD-tagging single nucleotide polymorphisms (SNPs) in 327 genes on chromosome 20, to test for association with schizophrenia in 270 Irish high-density families (ISHDSF, N = 270 families, 1408 subjects). These SNPs were genotyped using an Illumina iSelect genotyping array which employs the Infinium assay. Given a previous report of novel linkage with chromosome 20p using latent classes of psychotic illness in this sample, association analysis was also conducted for each of five factor-derived scores based on the Operational Criteria Checklist for Psychotic Illness (delusions, hallucinations, mania, depression, and negative symptoms). Tests of association were conducted using the PDTPHASE and QPDTPHASE packages of UNPHASED. Empirical estimates of gene-wise significance were obtained by adaptive permutation of a) the smallest observed P-value and b) the threshold-truncated product of P-values for each locus. Results While no single variant was significant after LD-corrected Bonferroni-correction, our gene-dropping analyses identified loci which exceeded empirical significance criteria for both gene-based tests. Namely, R3HDML and C20orf39 are significantly associated with depressive symptoms of schizophrenia (PempP-value and truncated-product methods, respectively. Conclusions Using a gene-based approach to family-based association, R3HDML and C20orf39 were found to be significantly associated with clinical dimensions of schizophrenia. These findings demonstrate the efficacy of gene-based analysis and support previous evidence that chromosome 20 may harbor schizophrenia susceptibility or modifier loci

    Affect Dysregulation and Disorders of the Self

    No full text

    A Comprehensive Survey of Mutations in the OPA1 Gene in Patients with Autosomal Dominant Optic Atrophy

    Get PDF
    10 páginas, 3 figuras, 3 tablas.-- et al.[PURPOSE]: To characterize the spectrum of mutations in the OPA1 gene in a large international panel of patients with autosomal dominant optic atrophy (adOA), to improve understanding of the range of functional deficits attributable to sequence variants in this gene, and to assess any genotype-phenotype correlations. [METHODS]: All 28 coding exons of OPA1, intron-exon splice sites, 273 bp 5' to exon 1, and two intronic regions with putative function were screened in 94 apparently unrelated white patients of European origin with adOA by single-strand conformational polymorphism (SSCP)-heteroduplex analysis and direct sequencing. Clinical data were collated, and putative mutations were tested for segregation in the respective families by SSCP analysis or direct sequencing and in 100 control chromosomes. Further characterization of selected splice site mutations was performed by RT-PCR of patient leukocyte RNA. Staining of mitochondria in leukocytes of patients and control subjects was undertaken to assess gross differences in morphology and cellular distribution. [RESULTS]: Twenty different mutations were detected, of which 14 were novel disease mutations (missense, nonsense, deletion-frameshift, and splice site alterations) and six were known mutations. Mutations were found in 44 (47%) of the 94 families included in the study. Ten new polymorphisms in the OPA1 gene were also identified. Mutations occur throughout the gene, with three clusters emerging: in the mitochondrial leader, in the highly conserved guanosine triphosphate (GTP)-binding domain, and in the -COOH terminus. Examination of leukocyte mitochondria from two unrelated patients with splice site mutations in OPA1 revealed no abnormalities of morphology or cellular distribution when compared with control individuals. [CONCLUSIONS]: This study describes 14 novel mutations in the OPA1 gene in patients with adOA, bringing the total number so far reported to 54. It is likely that many cases of adOA are due to mutations outside the coding region of OPA1 or to large-scale rearrangements. Evaluation of the mutation spectrum indicates more than one pathophysiological mechanism for adOA. Preliminary data suggests that phenotype-genotype correlation is complex, implying a role for other genetic modifying or environmental factors. No evidence was found of pathologic changes in leukocyte mitochondria of patients with adOA.Supported by Project Grant 056047 from The Wellcome Trust (Grant 313/ARC); British Council/German Academic Exchange Service (DAAD); University College London, Central Research Fund; Deutsche Forschungsgemeinschaft; and the Swiss National Science Foundation.Peer reviewe

    An Integrated, Functionally Annotated Gene Map of the DXS8026–ELK1 Interval on Human Xp11.3–Xp11.23: Potential Hotspot for Neurogenetic Disorders

    No full text
    13 páginas, 2 figuras, 3 tablas.-- et al.Human chromosome Xp11.3–Xp11.23 encompasses the map location for a growing number of diseases with a genetic basis or genetic component. These include several eye disorders, syndromic and nonsyndromic forms of X-linked mental retardation (XLMR), X-linked neuromuscular diseases and susceptibility loci for schizophrenia, type 1 diabetes, and Graves' disease. We have constructed an ∼2.7-Mb high-resolution physical map extending from DXS8026 to ELK1, corresponding to a genetic distance of ∼5.5 cM. A combination of chromosome walking and sequence-tagged site (STS)-content mapping resulted in an integrated framework and transcript map, precisely positioning 10 polymorphic microsatellites (one of which is novel), 16 ESTs, and 12 known genes (RP2, PCTK1, UHX1, UBE1, RBM10, ZNF157, SYN1, ARAF1, TIMP1, PFC, ELK1, UXT). The composite map is currently anchored with 89 STSs to give an average resolution of ∼1 STS every 30 kb. By a combination of EST database searches and in silico detection of UniGene clusters within genomic sequence generated from this template map, we have mapped several novel genes within this interval: a Na+/H+ exchanger (SLC9A7), at least two zincfinger transcription factors (KIAA0215 and Hs.68318), carbohydrate sulfotransferase-7 (CHST7), regucalcin (RGN), inactivation-escape-1 (INE1), the human ortholog of mouse neuronal protein 15.6, and four putative novel genes. Further genomic analysis enabled annotation of the sequence interval with 20 predicted pseudogenes and 21 UniGene clusters of unknown function. The combined PAC/BAC transcript map and YAC scaffold presented here clarifies previously conflicting data for markers and genes within the Xp11.3–Xp11.23 interval and provides a powerful integrated resource for functional characterization of this clonally unstable, yet gene-rich and clinically significant region of proximal Xp.We thank the Guide Dogs for the Blind Association (D. L. T.) and The Wellcome Trust (A. J. H.) for funding this research. A. M. was supported by a grant from the German Ministry for Education and Research.Peer reviewe

    A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: evidence for a founder effect

    No full text
    5 páginas, 2 figuras, 2 tablas.-- et al.Dominant optic atrophy (DOA) is a hereditary optic neuropathy characterised by decreased visual acuity, colour vision deficits, centro-coecal scotoma and optic nerve pallor. The gene OPA1, encoding a dynamin-related GTPase, has recently been identified within the genetic linkage interval for the major locus for DOA on chromosome 3q28 and shown to harbour genetic aberrations segregating with disease in DOA families. The prevalence of the disorder in Denmark is reported to be the highest of any geographical location, suggestive of a founder effect. In order to establish the genetic basis of disease in a sample of 33 apparently unrelated Danish families, we screened DNA from affected members for OPA1 gene mutations by heteroduplex analysis and direct sequencing. A novel identical mutation in exon 28 (2826delT) was associated with DOA in 14 pedigrees and led to a frameshift and abnormal OPA1 protein -COOH terminus. Haplotype analysis of a region of ~1 Mb flanking the OPA1 gene using eight polymorphic markers revealed a common haplotype shared by all 14 patients; this haplotype was markedly over-represented compared with ethnically matched controls. Statistical analysis confirmed significant linkage disequilibrium with DOA over ~600 kb encompassing the disease mutation. We have therefore demonstrated that the relatively high frequency of DOA in Denmark is attributable to a founder mutation responsible for ~42% of the examined families and suggest that presymptomatic screening for the (2826delT) mutation may facilitate diagnosis and genetic counselling in a significant proportion of DOA patients of Danish ancestry.This work was funded by the Wellcome Trust UK project grant 056047 (D.L.T., S.S.B., M.V.). C.A. is a fellow of the Deutsche Forschungsgemeinschaft.Peer reviewe

    Reports Genomic Organization of the Human TIMP-1 Gene Investigation of a Causative Role in the Pathogenesis of X-Linked Retinitis Pigmentosa 2

    No full text
    Purpose. To evaluate the role of TIMP-1 in inherited retinal degeneration. Methods. The genomic structure of the TIMP-1 gene was established and male patients with x-linked retinitis pigmentosa 2 from five families were screened for sequence alterations by direct sequencing in all exons, exon-intron boundaries, and the 5' upstream region of the gene. Results. TIMP-1 appears to be expressed in the retina at low levels and consists of six exons spanning a genomic region of approximately 4.5 kb on Xpll.23. No diseasespecific sequence alterations were identified. A site substitution in exon 5 was observed in samples from control subjects and patients, but it did not alter the amino acid sequence of the protein product. Conclusions. The results of this study exclude mutations in the TIMP-1 coding sequence, splice sites, and the 5' upstream region as a cause of retinal degeneration in x-linked retinitis pigmentosa 2. However, an as yet unidentified regulatory element that lies outside these intervals may be implicated. The role of this tightly regulated protein in the normal functioning of the retina has yet to be determined. Invest Ophthalmol Vis Sci. 1997; 38:1893-1896 L he turnover of the extracellular matrix is regulated by the synthesis of new components and the degradation of existing structures. Matrix catabolism is regulated by the action of matrix metalloproteinases, which degrade matrix components such as collagens, gelatins, fibronectin, and laminin. The activity of these From the
    corecore