1,061 research outputs found

    Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)

    Full text link
    Using density-functional theory with the local-density approximation and the generalized gradient approximation we compute the energy barriers for surface diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly with increasing lattice constant. We also discuss the reconstruction that has been found experimentally when two Ag layers are deposited on Pt(111). Our calculations explain why this strain driven reconstruction occurs only after two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres

    Is Barbero's Hamiltonian formulation a Gauge Theory of Lorentzian Gravity?

    Full text link
    This letter is a critique of Barbero's constrained Hamiltonian formulation of General Relativity on which current work in Loop Quantum Gravity is based. While we do not dispute the correctness of Barbero's formulation of general relativity, we offer some criticisms of an aesthetic nature. We point out that unlike Ashtekar's complex SU(2) connection, Barbero's real SO(3) connection does not admit an interpretation as a space-time gauge field. We show that if one tries to interpret Barbero's real SO(3) connection as a space-time gauge field, the theory is not diffeomorphism invariant. We conclude that Barbero's formulation is not a gauge theory of gravity in the sense that Ashtekar's Hamiltonian formulation is. The advantages of Barbero's real connection formulation have been bought at the price of giving up the description of gravity as a gauge field.Comment: 12 pages, no figures, revised in the light of referee's comments, accepted for publication in Classical and Quantum Gravit

    Phase space geometry and slow dynamics

    Full text link
    We describe a non-Arrhenius mechanism for slowing down of dynamics that is inherent to the high dimensionality of the phase space. We show that such a mechanism is at work both in a family of mean-field spin-glass models without any domain structure and in the case of ferromagnetic domain growth. The marginality of spin-glass dynamics, as well as the existence of a `quasi equilibrium regime' can be understood within this scenario. We discuss the question of ergodicity in an out-of equilibrium situation.Comment: 23 pages, ReVTeX3.0, 6 uuencoded postscript figures appende

    Localization in Strongly Chaotic Systems

    Full text link
    We show that, in the semiclassical limit and whenever the elements of the Hamiltonian matrix are random enough, the eigenvectors of strongly chaotic time-independent systems in ordered bases can on average be exponentially localized across the energy shell and decay faster than exponentially outside the energy shell. Typically however, matrix elements are strongly correlated leading to deviations from such behavior.Comment: RevTeX, 5 pages + 3 postscript figures, submitted to Phys. Rev. Let

    Unitary Quantum Physics with Time-Space Noncommutativity

    Full text link
    In this work quantum physics in noncommutative spacetime is developed. It is based on the work of Doplicher et al. which allows for time-space noncommutativity. The Moyal plane is treated in detail. In the context of noncommutative quantum mechanics, some important points are explored, such as the formal construction of the theory, symmetries, causality, simultaneity and observables. The dynamics generated by a noncommutative Schrodinger equation is studied. We prove in particular the following: suppose the Hamiltonian of a quantum mechanical particle on spacetime has no explicit time dependence, and the spatial coordinates commute in its noncommutative form (the only noncommutativity being between time and a space coordinate). Then the commutative and noncommutative versions of the Hamiltonian have identical spectra.Comment: 18 pages, published versio

    Critical Exponents of the N-vector model

    Full text link
    Recently the series for two RG functions (corresponding to the anomalous dimensions of the fields phi and phi^2) of the 3D phi^4 field theory have been extended to next order (seven loops) by Murray and Nickel. We examine here the influence of these additional terms on the estimates of critical exponents of the N-vector model, using some new ideas in the context of the Borel summation techniques. The estimates have slightly changed, but remain within errors of the previous evaluation. Exponents like eta (related to the field anomalous dimension), which were poorly determined in the previous evaluation of Le Guillou--Zinn-Justin, have seen their apparent errors significantly decrease. More importantly, perhaps, summation errors are better determined. The change in exponents affects the recently determined ratios of amplitudes and we report the corresponding new values. Finally, because an error has been discovered in the last order of the published epsilon=4-d expansions (order epsilon^5), we have also reanalyzed the determination of exponents from the epsilon-expansion. The conclusion is that the general agreement between epsilon-expansion and 3D series has improved with respect to Le Guillou--Zinn-Justin.Comment: TeX Files, 27 pages +2 figures; Some values are changed; references update

    Quantum States of Topologically Massive Electrodynamics and Gravity

    Get PDF
    The free quantum states of topologically massive electrodynamics and gravity in 2+1 dimensions, are explicitly found. It is shown that in both theories the states are described by infrared-regular polarization tensors containing a regularization phase which depends on the spin. This is done by explicitly realizing the quantum algebra on a functional Hilbert space and by finding the Wightman function to define the scalar product on such a Hilbert space. The physical properties of the states are analyzed defining creation and annihilation operators. For both theories, a canonical and covariant quantization procedure is developed. The higher order derivatives in the gravitational lagrangian are treated by means of a preliminary Dirac procedure. The closure of the Poincar\'e algebra is guaranteed by the infrared-finiteness of the states which is related to the spin of the excitations through the regularization phase. Such a phase may have interesting physical consequences.Comment: 21 page, latex, no figure

    Open-closed duality and Double Scaling

    Get PDF
    Nonperturbative terms in the free energy of Chern-Simons gauge theory play a key role in its duality to the closed topological string. We show that these terms are reproduced by performing a double scaling limit near the point where the perturbation expansion diverges. This leads to a derivation of closed string theory from this large-N gauge theory along the lines of noncritical string theories. We comment on the possible relevance of this observation to the derivation of superpotentials of asymptotically free gauge theories and its relation to infrared renormalons.Comment: 10 pages, LaTe

    Spin caloritronics in a CrBr3_3-based magnetic van der Waals heterostructure

    Get PDF
    The recently reported magnetic ordering in insulating two-dimensional (2D) materials, such as chromium triiodide (CrI3_3) and chromium tribromide (CrBr3_3), opens new possibilities for the fabrication of magneto-electronic devices based on 2D systems. Inevitably, the magnetization and spin dynamics in 2D magnets are strongly linked to Joule heating. Therefore, understanding the coupling between spin, charge and heat, i.e. spin caloritronic effects, is crucial. However, spin caloritronics in 2D ferromagnets remains mostly unexplored, due to their instability in air. Here we develop a fabrication method that integrates spin-active contacts with 2D magnets through hBN encapsulation, allowing us to explore the spin caloritronic effects in these materials. The angular dependence of the thermal spin signal of the CrBr3_3/Pt system is studied, for different conditions of magnetic field and heating current. We highlight the presence of a significant magnetic proximity effect from CrBr3_3 on Pt revealed by an anomalous Nernst effect in Pt, and suggest the contribution of the spin Seebeck effect from CrBr3_3. These results pave the way for future magnonic devices using air-sensitive 2D magnetic insulators
    corecore