8 research outputs found

    Torpedo Retinopathy

    Full text link
    Purpose: Torpedo lesions in the retina are rare. This study aimed to investigate torpedoshaped lesions in the retina in an adult population and to determine the spectrum and features of the disease. Methods: The review of a database for clinical diagnosis identified nine patients who were diagnosed with torpedo-shaped lesions in the retina between June 2017 and February 2019. Fundus photography and optical coherence tomography (OCT) imaging were used to analyze the cases. Multicolor imaging was also performed. Results: Nine patients with torpedo-shaped lesions in the fundus were identified. Fundus images revealed that the lesion involved the macula in six eyes; in the remaining three eyes, the lesion was present outside the macula. OCT identified six patients with type 1 torpedo lesions, one with type 2, and two with type 3. On multicolor imaging, the lesion was visualized as a region of increased reflectance in blue, green, and infrared light in all eyes, with notably increased infrared reflectance in eyes with focal choroidal excavation. Choroidal neovascular membrane was evident in one patient on OCT angiography. Conclusion: Torpedo lesions in the retina can occur away from the macula and exhibit features similar to those of torpedo maculopathy. As such, the authors propose a change in the nomenclature for torpedo lesions in the retina from “torpedo maculopathy” to “torpedo retinopathy.

    Nutritional potentialities of some tree leaves based on polyphenols and rumen in vitro gas production

    Get PDF
    Aim: The study was conducted to evaluate eight tree leaves based on polyphenolic content and rumen in vitro incubation and gas production technique (RIVIGPT) for their nutritive potentiality. Materials and Methods: Eight selected tree leaves, namely Sesbania grandiflora, Melia dubia, Dillenia spp., Artocarpus heterophyllus, Commiphora caudata, Moringa oleifera, Leucaena leucocephala, and Acacia auriculiformis, were selected for proximate composition, forage fiber fractions, total phenolics (TPs), non-tannin phenols (NTPs), total tannins (TTs), condensed tannins (CTs), and hydrolysable tannins (HTs); RIVIGP with and without polyethylene glycol (PEG); and in vitro dry matter digestibility (IVDMD) (modified in vitro two stage) analysis was conducted. On the basis of RIVIGPT, the in vitro digestible organic matter (IVDOM) and dry matter intake (DMI) was calculated. Results: Crude protein (CP) content of tree leaves ranged from 9.59 to 25.81%, neutral detergent fiber (NDF) 28.16 to 53.33%, acid detergent fiber (ADF) 21.26 to 41.7%, acid detergent lignin (ADL) 3.62 to 21.98%, TP 1.83 to 17.35%, TT 0.40 to 15.47%, and CTs 0.02 to 15.26%. IVDMD (%) was ranged from 64.95 to 88.12. The mean metabolizable energy (ME) (MJ/Kg) of tree leaves estimated with and without PEG was 7.75±0.56 and 8.75±0.39, in vitro gas production at 24 h (IVGP24) (ml) 31.06±4.14 and 37.09±2.64, initial gas production (a) (ml) 0.49±0.63 and 1.33±0.72, potential gas production (D) (ml) 38.74±4.27 and 43.79±2.44, rate of gas production (k) (h-1) 0.11±0.02 and 0.11±0.013, t1/2 (ml) 9.81±2.41 and 7.42±0.80, in vitro gas production at 96 h IVGP96 (ml) 39.50±4.430 and 45.14±2.65, the predicted IVDOM (%) 55.44±4.15 and 61.98±3.03, and DMI (g/Kg W0.75) 103.1±14.76 and 104.3±10.16, respectively. The addition of PEG showed an improvement in IVGP24, IVGP96, ME, predicted IVDOM, and predicted DMI. CP was positively correlated with ME, IVGP24, IVGP96, a+b, k (r=0.749, p<0.05), IVDMD, IVDOM, and DMI (r=0.838, p<0.05) and negatively correlated with a and t1/2. NDF, ADF, and ADL contents were negatively correlated with ME (r=0.899, p<0.05), IVGP24 (r=-0.867, p<0.05), IVGP96 (r=-0.858, p<0.05), a+b (p<0.05), k (r=-0.828, p<0.05), IVDMD, IVDOM (r=-0.853, p<0.05), and DMI and positively correlated with a and t1/2. TP, TT, and CT were negatively correlated with ME, IVGP, IVGP96, a+b, k, IVDMD, IVDOM, and DMI and positively correlated with a (r=0.808, p<0.05) and t1/2. ME (MJ/Kg) was positively correlated with IVGP24 (r=0.938, p<0.05), IVGP96 (r=0.875, p<0.05), a+b (r=0.813, p<0.05), k (r=0.731, p<0.05), IVDMD, IVDOM (r=0.985, p<0.05), and DMI (r=0.727, p<0.05) and negatively correlated with a and t1/2. Conclusion: In the present study, the potentiality of tree leaves was assessed based on CP, ADF, ADL, TP, CT, IVGP, ME, IVDMD, predicted IVDOM, and predicted DMI. Based on this, it can be concluded that S. grandiflora, M. dubia, M. Oleifera, and L. leucocephala were graded as best; A. heterophyllus and C. caudata as moderate; and Dillenia spp. and A. auriculiformis as lowest potential ruminant feed

    Not Available

    No full text
    Not AvailableThis study aimed to develop latex agglutination test (LAT) using recombinant leptospiral immunoglobulin-like protein (LigB) (rLigB) antigen and compare its diagnostic efficacy with LAT using conventional heat-killed leptospiral antigen and microscopic agglutination test (MAT) in diagnosing bovine leptospirosis. The PCR-amplified 1053-bp ligB gene sequences from Leptospira borgpetersenii Hardjo serovar were cloned in pET 32 (a) vector at EcoRI and NotI sites and expressed in BL21 E. coli cells as fusion protein with thioredoxin (-57 kDa) and characterized by SDS-PAGE and immunoblot. Out of 390 serum samples [cattle (n = 214), buffaloes (n = 176)] subjected to MAT, 115 samples showed reciprocal titre≥100 up to 1600 against one or more serovars. For recombinant LigB protein/antigen-based LAT, agglutination was observed in the positive sample, while no agglutination was observed in the negative sample. Similarly, heat-killed leptospiral antigen was prepared from and used in LAT for comparison with MAT. A two-sided contingency table was used for analysis of LAT using both the antigens separately against MAT for 390 serum samples. The sensitivity, specificity and positive and negative predictive values of recombinant LigB LAT were found to be 75.65, 91.27, 78.38 and 89.96 %, respectively, and that of heat-killed antigen-based LAT were 72.17, 89.82, 74.77 and 88.53 %, respectively, in comparison with MAT. This developed test will be an alternative/complementary to the existing battery of diagnostic assays/tests for specific detection of pathogenic Leptospira infection in bovine population.Not Availabl
    corecore