188 research outputs found

    Magnetic Interactions of Neighbouring Stator Sets in Multi DOF Local Electromagnetic Actuation for Robotic Abdominal Surgery

    Get PDF
    This paper aims to characterise the magnetic interaction in neighbouring sets of local electromagnetic actuation (LEMA) actuators in a robotic platform for abdominal surgery. The analysis looks into the affect of the magnetic fields contributed by a stator-rotor set (the actuation unit) located adjacent to the rotor of interest. Each rotor drives one of the degree-of-freedoms (DOFs) on a surgical robotic device. In this study, a two-DOF setup is used for the magnetic interaction analysis, which can be expanded to general case n-DOF setup with the Principle of Superposition of magnetic fields from multiple sources. The magnetic model is then used to compute the dynamics of the system, which involves the equation of motion of the rotors and associated robotic mechanism it drives, and the actuator (electrical) model that takes into account the back EMF generated by the permanent magnet rotors. The magnetic field effect of the neighbouring set onto the rotor is observed by obtaining the speed response of the rotor through simulation so that the dynamic model can be validated against the experimental results. The outcomes are useful for the design specification of the LEMA system configuration, involving the feasible / pragmatic distance between the stator sets such that the interference is minimised, and for the design of the necessary control strategy

    Disturbance Rejection in Multi-DOF Local Magnetic Actuation for Robotic Abdominal Surgery

    Get PDF
    The potential of multi-degrees-of-freedom (DOFs) local magnetic actuation (LMA) has been established in recent years for dexterous minimally invasive surgical manipulations. Nonetheless, having multiple magnetic based units, one for each DOF, within a close vicinity to each other leads to magnetic field interaction among the magnetic sources, hence, resulting in a disturbance to a given LMA unit. It is further realized that the disturbance is a result of actuation effort by the neighboring magnetic sources forming the LMA units, and that the actuation command to all LMA units is a known information to the controller. Therefore, partial information of the disturbance is known and can be exploited in a disturbance rejection strategy. In this letter, this disturbance is modeled and used to augment a simplified model of the systems dynamics of the LMA-based surgical manipulators. The internal model principle (IMP) strategy is selected in which an observer is designed to estimate the disturbance to be rejected. Numerical simulation as well as experimental validation were performed to validate the efficacy of the IMP. The results serve to remove a significant technical hurdle in bringing the new emerging technique of LMA into practical reality for abdominal surgeries

    Magnetic Surgical Instruments for Robotic Abdominal Surgery.

    Get PDF
    This review looks at the implementation of magnetic-based approaches in surgical instruments for abdominal surgeries. As abdominal surgical techniques advance toward minimizing surgical trauma, surgical instruments are enhanced to support such an objective through the exploration of magnetic-based systems. With this design approach, surgical devices are given the capabilities to be fully inserted intraabdominally to achieve access to all abdominal quadrants, without the conventional rigid link connection with the external unit. The variety of intraabdominal surgical devices are anchored, guided, and actuated by external units, with power and torque transmitted across the abdominal wall through magnetic linkage. This addresses many constraints encountered by conventional laparoscopic tools, such as loss of triangulation, fulcrum effect, and loss/lack of dexterity for surgical tasks. Design requirements of clinical considerations to aid the successful development of magnetic surgical instruments, are also discussed

    Indocyanine green fluorescence image processing techniques for breast cancer macroscopic demarcation

    Get PDF
    Re-operation due to disease being inadvertently close to the resection margin is a major challenge in breast conserving surgery (BCS). Indocyanine green (ICG) fluorescence imaging could be used to visualize the tumor boundaries and help surgeons resect disease more efficiently. In this work, ICG fluorescence and color images were acquired with a custom-built camera system from 40 patients treated with BCS. Images were acquired from the tumor in-situ, surgical cavity post-excision, freshly excised tumor and histopathology tumour grossing. Fluorescence image intensity and texture were used as individual or combined predictors in both logistic regression (LR) and support vector machine models to predict the tumor extent. ICG fluorescence spectra in formalin-fixed histopathology grossing tumor were acquired and analyzed. Our results showed that ICG remains in the tissue after formalin fixation. Therefore, tissue imaging could be validated in freshly excised and in formalin-fixed grossing tumor. The trained LR model with combined fluorescence intensity (pixel values) and texture (slope of power spectral density curve) identified the tumor’s extent in the grossing images with pixel-level resolution and sensitivity, specificity of 0.75 ± 0.3, 0.89 ± 0.2.This model was applied on tumor in-situ and surgical cavity (post-excision) images to predict tumor presence

    Robustness Evaluation of Internal Model Principle-based Controller in a Magnetically Actuated Surgical System

    Get PDF
    The local magnetic actuation (LMA) surgical method has gained popularity among medical practitioners and researchers in the field of abdominal surgery. The procedure requires the use of magnets on both sides of the abdominal cavity to anchor devices onto abdominal wall while magnetic sources on the external side generate actuation signals to drive robotic manipulators inside the cavity. Due to the transmission of magnetic fields across the abdominal wall and the interactions among multiple LMA units within the vicinity, magnetic interference will affect the performance of the intended rotor driving the degree-of-freedom (DOF) on the robotic manipulator. Since the disturbances due to the neighbouring magnetic sources are found to be sinusoidal signals with a known frequency, they can be rejected by using the internal model principle (IMP) technique. The disturbance due to the abdominal wall tissue dynamics during magnetic actuation causes oscillations on the internally anchored surgical device, which has generally been ignored in the implementation of LMA application. The focus of this paper is to provide a model that incorporates tissue dynamics in the LMA system. Moreover, the robustness of IMP controller in the presence of tissue dynamics is discussed. Simulations are performed and the results demonstrate effective rejection of both disturbances when they are taken into account in the IMP disturbance model
    corecore