18 research outputs found

    Effects of natural sequence variation on recognition by monoclonal antibodies neutralize simian immunodeficiency virus infectivity.

    Get PDF
    The determinants of immune recognition by five monoclonal antibodies (KK5, KK9, KK17, Senv7.1, and Senv101.1) that neutralize simian immunodeficiency virus infectivity were analyzed. These five neutralizing monoclonal antibodies were generated to native SIVmac251 envelope glycoprotein expressed by a vaccinia virus recombinant vector. All five recognize conformational or discontinuous epitopes and require native antigen for optimal recognition. These monoclonal antibodies also recognize SIVmac239 gp120, but they do not recognize gp120 of two natural variants of SIVmac239, 1-12 and 8-22, which evolved during the course of persistent infection in vivo (D.P.W. Burns and R.C. Desrosiers, J. Virol. 65:1843-1854, 1991). Recombinant viruses which were constructed by exchanging variable regions between SIVmac239 and variant 1-12 were used to define domains important for recognition. Radioimmunoprecipitation analysis demonstrated that sequence changes in variable regions 4 and 5 (V4/V5) were primarily responsible for the loss of recognition of the 1-12 variant. Site-specific mutants were used to define precise changes that eliminate recognition by these neutralizing antibodies. Changing N-409 to D, deletion of KPKE, and deletion of KEQH in V4 each resulted in loss of recognition by all five monoclonal antibodies. SIVs with these natural sequence changes are still replication competent and viable. Changing A-417 to T or A/N-417/418 to TK in V4 or Q-477 to K in V5 did not alter recognition detectably. These results define specific, naturally occurring sequence changes in V4 of SIVmac that result in loss of recognition by one class of SIVmac neutralizing antibodies

    Effects of Natural Sequence Variation on Recognition by Monoclonal Antibodies Neutralize Simian Immunodeficiency Virus Infectivity

    No full text
    The determinants of immune recognition by five monoclonal antibodies (KK5, KK9, KK17, Senv7.1, and Senv101.1) that neutralize simian immunodeficiency virus infectivity were analyzed. These five neutralizing monoclonal antibodies were generated to native SIVmac251 envelope glycoprotein expressed by a vaccinia virus recombinant vector. All five recognize conformational or discontinuous epitopes and require native antigen for optimal recognition. These monoclonal antibodies also recognize SIVmac239 gp120, but they do not recognize gp120 of two natural variants of SIVmac239, 1-12 and 8-22, which evolved during the course of persistent infection in vivo (D.P.W. Burns and R.C. Desrosiers, J. Virol. 65:1843-1854, 1991). Recombinant viruses which were constructed by exchanging variable regions between SIVmac239 and variant 1-12 were used to define domains important for recognition. Radioimmunoprecipitation analysis demonstrated that sequence changes in variable regions 4 and 5 (V4/V5) were primarily responsible for the loss of recognition of the 1-12 variant. Site-specific mutants were used to define precise changes that eliminate recognition by these neutralizing antibodies. Changing N-409 to D, deletion of KPKE, and deletion of KEQH in V4 each resulted in loss of recognition by all five monoclonal antibodies. SIVs with these natural sequence changes are still replication competent and viable. Changing A-417 to T or A/N-417/418 to TK in V4 or Q-477 to K in V5 did not alter recognition detectably. These results define specific, naturally occurring sequence changes in V4 of SIVmac that result in loss of recognition by one class of SIVmac neutralizing antibodies

    Virus load in chimpanzees infected with human immunodeficiency virus type 1: effect of pre-exposure vaccination

    No full text
    Many reports indicate that a long-term asymptomatic state following human immunodeficiency virus type 1 (HIV-1) infection is associated with a low amount of circulating virus. To evaluate the possible effect of stabilizing a low virus load by non-sterilizing pre-exposure vaccination, a quantitative virus isolation method was developed and evaluated in four chronically infected chimpanzees infected with a variety of HIV-1 related isolates. This assay was then used to monitor a group of chimpanzees (n = 6) challenged with HIV-1 following vaccination with gp120 or gp160. Data indicated that of the three vaccinated animals which became infected after challenge, the animal with the lowest neutralizing titre at the time of challenge acquired a virus load similar to the control animals, whereas the two other chimpanzees had reduced numbers of virus producing cells in their peripheral circulation. One animal became virus isolation negative, developed an indeterminant PCR signal on lymph node DNA and subsequently became negative for HIV-1 DNA as determined by PCR on PBMC (peripheral blood mononuclear cells) and bone marrow DNA. Recently, the second animal has also become PCR negative. To confirm observations from quantitative virus isolations, quantification of HIV-1 DNA in PBMC and virus RNA in serum was performed by PCR on serially diluted samples at two different time points. Comparison of virus load as determined by these three methods confirmed that there was an effect of vaccination in reducing virus load and demonstrated a correlation between decreased numbers of virus producing cells, HIV-1 DNA containing cells and virus RNA molecules in seru

    Incomplete protection, but suppression of virus burden, elicited by subunit simian immunodeficiency virus vaccines.

    No full text
    We compared the efficacy of immunization with either simian immunodeficiency virus (SIV) Env glycoprotein (Env), Env plus Gag proteins (Gag-Env), or whole inactivated virus (WIV), with or without recombinant live vaccinia vector (VV) priming, in protecting 23 rhesus macaques (six vaccine and two control groups) from challenge with SIVmac251 clone BK28. Vaccination elicited high titers of syncytium-inhibiting and anti-Env (gp120/gp160) antibodies in all vaccinated macaques and anti-Gag (p27) antibodies in groups immunized with WIV or Gag-Env. Only WIV-immunized macaques developed anticell (HuT78) antibodies. After homologous low-dose intravenous virus challenge, we used frequency of virus isolation, provirus burden, and change in antibody titers to define four levels of resistance to SIV infection as follows. (i) No infection ("sterilizing" immunity) was induced only in WIV-immunized animals. (ii) Abortive infection (strong immunity) was defined when virus or provirus were detected early in the postchallenge period but not thereafter and no evidence of virus or provirus was detected in terminal tissues. This response was observed in two animals (one VV-Env and one Gag-Env). (iii) Suppression of infection (incomplete or partial immunity) described a gradient of virus suppression manifested by termination of viremia, declining postchallenge antibody titers, and low levels (composite mean = 9.1 copies per 10(6) cells) of provirus detectable in peripheral blood mononuclear cells or lymphoid tissues at termination (40 weeks postchallenge). This response occurred in the majority (8 of 12) of subunit-vaccinated animals. (iv) Active infection (no immunity) was characterized by persistent virus isolation from blood mononuclear cells, increasing viral antibody titers postchallenge, and high levels (composite mean = 198 copies per 10(6) cells) of provirus in terminal tissues and blood. Active infection developed in all controls and two of three VV-Gag-Env-immunized animals. The results of this study restate the protective effect of inactivated whole virus vaccines produced in heterologous cells but more importantly demonstrate that a gradient of suppression of challenge virus growth, reflecting partial resistance to SIV infection, is induced by subunit vaccination. The latter finding may be pertinent to studies with human immunodeficiency virus vaccines, in which it is plausible that vaccination may elicit significant suppression of virus infection and pathogenicity rather than sterilizing immunity

    Incomplete protection, but suppression of virus burden, elicited by subunit simian immunodeficiency virus vaccines

    No full text
    We compared the efficacy of immunization with either simian immunodeficiency virus (SIV) Env glycoprotein (Env), Env plus Gag proteins (Gag-Env), or whole inactivated virus (WIV), with or without recombinant live vaccinia vector (VV) priming, in protecting 23 rhesus macaques (six vaccine and two control groups) from challenge with SIVmac251 clone BK28. Vaccination elicited high titers of syncytium-inhibiting and anti-Env (gp120/gp160) antibodies in all vaccinated macaques and anti-Gag (p27) antibodies in groups immunized with WIV or Gag-Env. Only WIV-immunized macaques developed anticell (HuT78) antibodies. After homologous low-dose intravenous virus challenge, we used frequency of virus isolation, provirus burden, and change in antibody titers to define four levels of resistance to SIV infection as follows. (i) No infection ('sterilizing' immunity) was induced only in WIV-immunized animals. (ii) Abortive infection (strong immunity) was defined when virus or provirus were detected early in the postchallenge period but not thereafter and no evidence of virus or provirus was detected in terminal tissues. This response was observed in two animals (one VV-Env and one Gag-Env). (iii) Suppression of infection (incomplete or partial immunity) described a gradient of virus suppression manifested by termination of viremia, declining postchallenge antibody titers, and low levels (composite mean = 9.1 copies per 106 cells) of provirus detectable in peripheral blood mononuclear cells or lymphoid tissues at termination (40 weeks postchallenge). This response occurred in the majority (8 of 12) of subunit-vaccinated animals. (iv) Active infection (no immunity) was characterized by persistent virus isolation from blood mononuclear cells, increasing viral antibody titers postchallenge, and high levels (composite mean = 198 copies per 106 cells) of provirus in terminal tissues and blood. Active infection developed in all controls and two of three VV-Gag-Env-immunized animals. The results of this study restate the protective effect of inactivated whole virus vaccines produced in heterologous cells but more importantly demonstrate that a gradient of suppression of challenge virus growth, reflecting partial resistance to SIV infection, is induced by subunit vaccination. The latter finding may be pertinent to studies with human immunodeficiency virus vaccines, in which it is plausible that vaccination may elicit significant suppression of virus infection and pathogenicity rather than sterilizing immunity.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore