18 research outputs found

    Albiglutide, a Long Lasting Glucagon-Like Peptide-1 Analog, Protects the Rat Heart against Ischemia/Reperfusion Injury: Evidence for Improving Cardiac Metabolic Efficiency

    Get PDF
    BACKGROUND: The cardioprotective effects of glucagon-like peptide-1 (GLP-1) and analogs have been previously reported. We tested the hypothesis that albiglutide, a novel long half-life analog of GLP-1, may protect the heart against I/R injury by increasing carbohydrate utilization and improving cardiac energetic efficiency. METHODS/PRINCIPAL FINDINGS: Sprague-Dawley rats were treated with albiglutide and subjected to 30 min myocardial ischemia followed by 24 h reperfusion. Left ventricle infarct size, hemodynamics, function and energetics were determined. In addition, cardiac glucose disposal, carbohydrate metabolism and metabolic gene expression were assessed. Albiglutide significantly reduced infarct size and concomitantly improved post-ischemic hemodynamics, cardiac function and energetic parameters. Albiglutide markedly increased both in vivo and ex vivo cardiac glucose uptake while reducing lactate efflux. Analysis of metabolic substrate utilization directly in the heart showed that albiglutide increased the relative carbohydrate versus fat oxidation which in part was due to an increase in both glucose and lactate oxidation. Metabolic gene expression analysis indicated upregulation of key glucose metabolism genes in the non-ischemic myocardium by albiglutide. CONCLUSION/SIGNIFICANCE: Albiglutide reduced myocardial infarct size and improved cardiac function and energetics following myocardial I/R injury. The observed benefits were associated with enhanced myocardial glucose uptake and a shift toward a more energetically favorable substrate metabolism by increasing both glucose and lactate oxidation. These findings suggest that albiglutide may have direct therapeutic potential for improving cardiac energetics and function

    Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing

    Get PDF
    RNA interference is implemented through the action of the RNA-induced silencing complex (RISC). Although Argonaute2 has been identified as the catalytic center of RISC, the RISC polypeptide composition and assembly using short interfering RNA (siRNA) duplexes has remained elusive. Here we show that RISC is composed of Dicer, the double-stranded RNA binding protein TRBP, and Argonaute2. We demonstrate that this complex can cleave target RNA using precursor microRNA (pre-miRNA) hairpin as the source of siRNA. Although RISC can also utilize duplex siRNA, it displays a nearly 10-fold greater activity using the pre-miRNA Dicer substrate. RISC distinguishes the guide strand of the siRNA from the passenger strand and specifically incorporates the guide strand. Importantly, ATP is not required for miRNA processing, RISC assembly, or multiple rounds of target-RNA cleavage. These results define the composition of RISC and demonstrate that miRNA processing and target-RNA cleavage are coupled

    RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer–TRBP complex

    No full text
    MicroRNAs (miRNAs) mediate translational repression or degradation of their target messenger RNAs by RNA interference (RNAi). The primary transcripts of miRNA genes (pri-miRNAs) are sequentially processed by the nuclear Drosha–DGCR8 complex to approximately 60–70 nucleotide (nt) intermediates (pre-miRNAs) and then by the cytoplasmic Dicer–TRBP complex to approximately 20–22 nt mature miRNAs. Certain pri-miRNAs are subject to RNA editing that converts adenosine to inosine (A → I RNA editing); however, the fate of edited pri-miRNAs is mostly unknown. Here, we provide evidence that RNA editing of pri-miR-151 results in complete blockage of its cleavage by Dicer and accumulation of edited pre-miR-151 RNAs. Our results indicate that A → I conversion at two specific positions of the pre-miRNA foldback structure can affect its interaction with the Dicer–TRBP complex, showing a new regulatory role of A → I RNA editing in miRNA biogenesis

    Modulation of microRNA processing and expression through RNA editing by ADAR deaminases

    No full text
    Adenosine deaminases acting on RNA (ADARs) are involved in editing of adenosine residues to inosine in double−stranded RNA (dsRNA). Although this editing recodes and alters functions of several mammalian genes, its most common targets are noncoding repeat sequences, indicating the involvement of this editing system in currently unknown functions other than recoding of protein sequences. Here we show that specific adenosine residues of certain microRNA (miRNA) precursors are edited by ADAR1 and ADAR2. Editing of pri−miR−142 was degraded by Tudor−SN, a component of RISC and also a ribonuclease specific to inosine−containing dsRNAs. Consequently, mature miRNA−142 expression levels increased substantially in ADAR1 null or ADAR2 null mice. Our results demonstrate a new function of RNA editing in the control of miRNA biogenesis

    TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing

    No full text
    MicroRNAs (miRNAs) are generated by a two-step processing pathway to yield RNA molecules of approximately 22 nucleotides that negatively regulate target gene expression at the post-transcriptional level 1 . Primary miRNAs are processed to precursor miRNAs (pre-miRNAs) by the Microprocessor complex 2 – 4 . These pre-miRNAs are cleaved by the RNase III Dicer 5 – 8 to generate mature miRNAs that direct the RNA-induced silencing complex (RISC) to messenger RNAs with complementary sequence 9 . Here we show that TRBP (the human immunodeficiency virus transactivating response RNA-binding protein 10 ), which contains three double-stranded, RNA-binding domains, is an integral component of a Dicer-containing complex. Biochemical analysis of TRBP-containing complexes revealed the association of Dicer–TRBP with Argonaute 2 (Ago2) 11 , 12 , the catalytic engine of RISC. The physical association of Dicer–TRBP and Ago2 was confirmed after the isolation of the ternary complex using Flag-tagged Ago2 cell lines. In vitro reconstitution assays demonstrated that TRBP is required for the recruitment of Ago2 to the small interfering RNA (siRNA) bound by Dicer. Knockdown of TRBP results in destabilization of Dicer and a consequent loss of miRNA biogenesis. Finally, depletion of the Dicer–TRBP complex via exogenously introduced siRNAs diminished RISC-mediated reporter gene silencing. These results support a role of the Dicer–TRBP complex not only in miRNA processing but also as a platform for RISC assembly

    MicroRNA silencing through RISC recruitment of eIF6

    No full text
    MicroRNAs (miRNAs) are a class of small RNAs that act post-transcriptionally to regulate messenger RNA stability and translation. To elucidate how miRNAs mediate their repressive effects, we performed biochemical and functional assays to identify new factors in the miRNA pathway. Here we show that human RISC (RNA-induced silencing complex) associates with a multiprotein complex containing MOV10--which is the homologue of Drosophila translational repressor Armitage--and proteins of the 60S ribosome subunit. Notably, this complex contains the anti-association factor eIF6 (also called ITGB4BP or p27BBP), a ribosome inhibitory protein known to prevent productive assembly of the 80S ribosome. Depletion of eIF6 in human cells specifically abrogates miRNA-mediated regulation of target protein and mRNA levels. Similarly, depletion of eIF6 in Caenorhabditis elegans diminishes lin-4 miRNA-mediated repression of the endogenous LIN-14 and LIN-28 target protein and mRNA levels. These results uncover an evolutionarily conserved function of the ribosome anti-association factor eIF6 in miRNA-mediated post-transcriptional silencing
    corecore