20 research outputs found

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    In vivo detection of apoptosis in an intracardiac tumor

    No full text
    We previously demonstrated in vivo imaging of cell death in the myocardia of patients with acute myocardial infarction using technetium Tc 99m–labeled annexin-V (99mTc-p-annexin-V [Apomate], Theseus Imaging, Cambridge, Mass) and nuclear imaging.1 Because high proliferation and apoptotic indices have been reported in rapidly growing malignant tumors,2 information about the extent of apoptosis in the tumor may also provide insight into the tumor's biology and prognosis

    Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mTc-annexin A5

    No full text
    Annexin A5 (AnxA5) is a protein with high affinity for phosphatidyl serine, a phospholipid exposed on the cell surface during apoptosis. This phenomenon has been used for determination of cell death after myocardial infarction. To evaluate the potential of (99m)Tc-AnxA5 for in vivo scintigraphy of apoptotic cells, the pharmacokinetics and imaging properties of two radiopharmaceuticals, (99m)Tc-(n-1-imino-4-mercaptobutyl)-AnxA5 (I-AnxA5) and (99m)Tc-(4,5-bis(thioacetamido)pentanoyl)-AnxA5 (B-AnxA5), were studied. I-AnxA5 was administered intravenously to seven patients and one healthy volunteer, and B-AnxA5 was administered to 12 patients. All patients in the pharmacokinetic study had myocardial disease. Additionally, imaging was performed in a patient with acute myocardial infarction, as well as in three patients with different malignancies. The plasma concentration, excretion and biodistribution of (99m)Tc-AnxA5 were measured, as well as levels of AnxA5 antigen. The kinetic data of both radiopharmaceuticals in plasma fitted a two-compartment model. Both preparations had similar half-lives, but a different distribution over the two compartments. Plasma levels of AnxA5 antigen showed a broad variation. Both radiopharmaceuticals accumulated in the kidney, liver and gut. B-AnxA5 was excreted significantly faster than I-AnxA5. Both compounds can be used for imaging of the head/neck region, the thorax and the extremities. B-AnxA5 has a faster clearance and a lower radiation dose. Imaging of apoptosis in the abdomen will be difficult with both radiopharmaceuticals, and especially with B-AnxA5 because of its faster appearance in the gut

    Selective nodal irradiation on basis of (18)FDG-PET scans in limited-disease small-cell lung cancer: a prospective study

    Get PDF
    PURPOSE: To evaluate the results of selective nodal irradiation on basis of (18)F-deoxyglucose positron emission tomography (PET) scans in patients with limited-disease small-cell lung cancer (LD-SCLC) on isolated nodal failure. METHODS AND MATERIALS: A prospective study was performed of 60 patients with LD-SCLC. Radiotherapy was given to a dose of 45 Gy in twice-daily fractions of 1.5 Gy, concurrent with carboplatin and etoposide chemotherapy. Only the primary tumor and the mediastinal lymph nodes involved on the pretreatment PET scan were irradiated. A chest computed tomography (CT) scan was performed 3 months after radiotherapy completion and every 6 months thereafter. RESULTS: A difference was seen in the involved nodal stations between the pretreatment (18)F-deoxyglucose PET scans and computed tomography scans in 30% of patients (95% confidence interval, 20-43%). Of the 60 patients, 39 (65%; 95% confidence interval [CI], 52-76%) developed a recurrence; 2 patients (3%, 95% CI, 1-11%) experienced isolated regional failure. The median actuarial overall survival was 19 months (95% CI, 17-21). The median actuarial progression-free survival was 14 months (95% CI, 12-16). 12% (95% CI, 6-22%) of patients experienced acute Grade 3 (Common Terminology Criteria for Adverse Events, version 3.0) esophagitis. CONCLUSION: PET-based selective nodal irradiation for LD-SCLC resulted in a low rate of isolated nodal failures (3%), with a low percentage of acute esophagitis. These findings are in contrast to those from our prospective study of CT-based selective nodal irradiation, which resulted in an unexpectedly high percentage of isolated nodal failures (11%). Because of the low rate of isolated nodal failures and toxicity, we believe that our data support the use of PET-based SNI for LD-SCLC
    corecore