21 research outputs found

    Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome

    Get PDF
    The autosomal recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite the identification of the underlying gene defects, it is unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from mice and ICF2 patients affects nonhomologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and isotype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates its auto-poly(ADP-ribosyl)ation. The zinc-finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, through its association with poly(ADP-ribose) chains, ZBTB24 protects them from degradation by poly(ADP-ribose) glycohydrolase (PARG). This facilitates the poly(ADP-ribose)-dependent assembly of the LIG4/XRCC4 complex at DNA breaks, thereby promoting error-free NHEJ. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF2 syndrome

    Genetics and epigenetics of repeat derepression in human disease

    Get PDF
    A large part of the human genome consists of repetitive DNA. In this thesis two human diseases have been studied in which deregulation of repetitive DNA is a central feature: facioscapulohumeral muscular dystrophy (FSHD) and immunodeficiency, centromere instability and facial anomalies (ICF) syndrome. FSHD is caused by the misexression of the transcription factor DUX4 in skeletal muscle. DUX4 is encoded in the D4Z4 repeat array and is silenced in healthy somatic tissues. In this thesis, several aspects of the epigenetic deregulation of DUX4 in FSHD are described. We have analysed possible correlations between disease severity and epigenetic organization of the D4Z4 repeat. Next we showed that cellular ageing results in deregulation of genomic regions like D4Z4. Moreover, we show that SMCHD1 is the main epigenetic repressor of DUX4 in somatic cells. We next showed that DUX4 misexpression results in the activation of an FSHD candidate gene, FRG2. Finally, we report the generation of a transgenic mouse model for FSHD. The disease mechanism of ICF syndrome remains to be elucidated. However, in this thesis we identify two new ICF disease genes. We highlight a role for all four known ICF genes in repressing repetitive DNA, suggesting functional convergence of these genes.</p

    Mass volume measurement in severe head injury

    No full text
    Item does not contain fulltex

    Retroclival extradural hematoma is a magnetic resonance imaging diagnosis.

    No full text
    Item does not contain fulltextAn epidural hematoma of the clivus is reported in a 16-year-old boy after a motor vehicle accident. The diagnosis was made by magnetic resonance imaging. Only five similar cases have been reported in the literature. The patient was treated conservatively and recovered without neurological deficits. The mechanism of injury and formation of the hematoma in this region are discussed
    corecore