77 research outputs found
A Current Induced Transition in atomic-sized contacts of metallic Alloys
We have measured conductance histograms of atomic point contacts made from
the noble-transition metal alloys CuNi, AgPd, and AuPt for a concentration
ratio of 1:1. For all alloys these histograms at low bias voltage (below 300
mV) resemble those of the noble metals whereas at high bias (above 300 mV) they
resemble those of the transition metals. We interpret this effect as a change
in the composition of the point contact with bias voltage. We discuss possible
explanations in terms of electromigration and differential diffusion induced by
current heating.Comment: 5 pages, 6 figure
Ising Universality in Three Dimensions: A Monte Carlo Study
We investigate three Ising models on the simple cubic lattice by means of
Monte Carlo methods and finite-size scaling. These models are the spin-1/2
Ising model with nearest-neighbor interactions, a spin-1/2 model with
nearest-neighbor and third-neighbor interactions, and a spin-1 model with
nearest-neighbor interactions. The results are in accurate agreement with the
hypothesis of universality. Analysis of the finite-size scaling behavior
reveals corrections beyond those caused by the leading irrelevant scaling
field. We find that the correction-to-scaling amplitudes are strongly dependent
on the introduction of further-neighbor interactions or a third spin state. In
a spin-1 Ising model, these corrections appear to be very small. This is very
helpful for the determination of the universal constants of the Ising model.
The renormalization exponents of the Ising model are determined as y_t = 1.587
(2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q =
^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry.
The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546
(10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal
of Physics A
Local structure study of In_xGa_(1-x)As semiconductor alloys using High Energy Synchrotron X-ray Diffraction
Nearest and higher neighbor distances as well as bond length distributions
(static and thermal) of the In_xGa_(1-x)As (0<x<1) semiconductor alloys have
been obtained from high real-space resolution atomic pair distribution
functions (PDFs). Using this structural information, we modeled the local
atomic displacements in In_xGa_(1-x)As alloys. From a supercell model based on
the Kirkwood potential, we obtained 3-D As and (In,Ga) ensemble averaged
probability distributions. This clearly shows that As atom displacements are
highly directional and can be represented as a combination of and
displacements. Examination of the Kirkwood model indicates that the standard
deviation (sigma) of the static disorder on the (In,Ga) sublattice is around
60% of the value on the As sublattice and the (In,Ga) atomic displacements are
much more isotropic than those on the As sublattice. The single crystal diffuse
scattering calculated from the Kirkwood model shows that atomic displacements
are most strongly correlated along directions.Comment: 10 pages, 12 figure
Molecular dynamics simulations of ballistic He penetration into W fuzz
Results are presented of large-scale Molecular Dynamics simulations of low-energy He bombardment of W nanorods, or so-called 'fuzz' structures. The goal of these simulations is to see if ballistic He penetration through W fuzz offers a more realistic scenario for how He moves through fuzz layers than He diffusion through fuzz nanorods. Instead of trying to grow a fuzz layer starting from a flat piece of bulk W, a new approach of creating a fully formed fuzz structure 0.43 mu m thick out of ellipsoidal pieces of W is employed. Lack of detailed experimental knowledge of the 3D structure of fuzz is dealt with by simulating He bombardment on five different structures of 15 vol% W and determining the variation in He penetration for each case. The results show that by far the most important factor determining He penetration is the amount of open channels through which He ions can travel unimpeded. For a more or less even W density distribution He penetration into fuzz falls off exponentially with distance and can thus be described by a 'half depth'. In a 15 vol% fuzz structure, the half depth can reach 0.18 mu m. In the far sparser fuzz structures that were recently reported, the half depth might be 1 mu m or more. This means that ballistic He penetration offers a more likely scenario than He diffusion through nanorods for how He moves through fuzz and may provide an adequate explanation for how He penetrates through the thickest fuzz layers reported so far. Furthermore, the exponential decrease in penetration with depth would follow a logarithmic dependence on fluence which is compatible with experiments. A comparison of these results and molecular dynamics calculations carried out in the recoil interaction approximation shows that results for W fuzz are qualitatively very different from conventional stopping power calculations on W with a similarly low but homogeneous density distribution.Peer reviewe
- …