47 research outputs found

    Fluid limit theorems for stochastic hybrid systems with application to neuron models

    Full text link
    This paper establishes limit theorems for a class of stochastic hybrid systems (continuous deterministic dynamic coupled with jump Markov processes) in the fluid limit (small jumps at high frequency), thus extending known results for jump Markov processes. We prove a functional law of large numbers with exponential convergence speed, derive a diffusion approximation and establish a functional central limit theorem. We apply these results to neuron models with stochastic ion channels, as the number of channels goes to infinity, estimating the convergence to the deterministic model. In terms of neural coding, we apply our central limit theorems to estimate numerically impact of channel noise both on frequency and spike timing coding.Comment: 42 pages, 4 figure

    From limit cycles to strange attractors

    Full text link
    We define a quantitative notion of shear for limit cycles of flows. We prove that strange attractors and SRB measures emerge when systems exhibiting limit cycles with sufficient shear are subjected to periodic pulsatile drives. The strange attractors possess a number of precisely-defined dynamical properties that together imply chaos that is both sustained in time and physically observable.Comment: 27 page

    Eigenfunctions of the Laplacian and associated Ruelle operator

    Full text link
    Let Γ\Gamma be a co-compact Fuchsian group of isometries on the Poincar\'e disk \DD and Δ\Delta the corresponding hyperbolic Laplace operator. Any smooth eigenfunction ff of Δ\Delta, equivariant by Γ\Gamma with real eigenvalue λ=s(1s)\lambda=-s(1-s), where s=1/2+its={1/2}+ it, admits an integral representation by a distribution \dd_{f,s} (the Helgason distribution) which is equivariant by Γ\Gamma and supported at infinity \partial\DD=\SS^1. The geodesic flow on the compact surface \DD/\Gamma is conjugate to a suspension over a natural extension of a piecewise analytic map T:\SS^1\to\SS^1, the so-called Bowen-Series transformation. Let s\ll_s be the complex Ruelle transfer operator associated to the jacobian slnT-s\ln |T'|. M. Pollicott showed that \dd_{f,s} is an eigenfunction of the dual operator s\ll_s^* for the eigenvalue 1. Here we show the existence of a (nonzero) piecewise real analytic eigenfunction ψf,s\psi_{f,s} of s\ll_s for the eigenvalue 1, given by an integral formula \psi_{f,s} (\xi)=\int \frac{J(\xi,\eta)}{|\xi-\eta|^{2s}} \dd_{f,s} (d\eta), \noindent where J(ξ,η)J(\xi,\eta) is a {0,1}\{0,1\}-valued piecewise constant function whose definition depends upon the geometry of the Dirichlet fundamental domain representing the surface \DD/\Gamma

    Generalized nonuniform dichotomies and local stable manifolds

    Full text link
    We establish the existence of local stable manifolds for semiflows generated by nonlinear perturbations of nonautonomous ordinary linear differential equations in Banach spaces, assuming the existence of a general type of nonuniform dichotomy for the evolution operator that contains the nonuniform exponential and polynomial dichotomies as a very particular case. The family of dichotomies considered allow situations for which the classical Lyapunov exponents are zero. Additionally, we give new examples of application of our stable manifold theorem and study the behavior of the dynamics under perturbations.Comment: 18 pages. New version with minor corrections and an additional theorem and an additional exampl

    Characterization of chaos in random maps

    Full text link
    We discuss the characterization of chaotic behaviours in random maps both in terms of the Lyapunov exponent and of the spectral properties of the Perron-Frobenius operator. In particular, we study a logistic map where the control parameter is extracted at random at each time step by considering finite dimensional approximation of the Perron-Frobenius operatorComment: Plane TeX file, 15 pages, and 5 figures available under request to [email protected]

    Perturbations of Noise: The origins of Isothermal Flows

    Full text link
    We make a detailed analysis of both phenomenological and analytic background for the "Brownian recoil principle" hypothesis (Phys. Rev. A 46, (1992), 4634). A corresponding theory of the isothermal Brownian motion of particle ensembles (Smoluchowski diffusion process approximation), gives account of the environmental recoil effects due to locally induced tiny heat flows. By means of local expectation values we elevate the individually negligible phenomena to a non-negligible (accumulated) recoil effect on the ensemble average. The main technical input is a consequent exploitation of the Hamilton-Jacobi equation as a natural substitute for the local momentum conservation law. Together with the continuity equation (alternatively, Fokker-Planck), it forms a closed system of partial differential equations which uniquely determines an associated Markovian diffusion process. The third Newton law in the mean is utilised to generate diffusion-type processes which are either anomalous (enhanced), or generically non-dispersive.Comment: Latex fil
    corecore