We establish the existence of local stable manifolds for semiflows generated
by nonlinear perturbations of nonautonomous ordinary linear differential
equations in Banach spaces, assuming the existence of a general type of
nonuniform dichotomy for the evolution operator that contains the nonuniform
exponential and polynomial dichotomies as a very particular case. The family of
dichotomies considered allow situations for which the classical Lyapunov
exponents are zero. Additionally, we give new examples of application of our
stable manifold theorem and study the behavior of the dynamics under
perturbations.Comment: 18 pages. New version with minor corrections and an additional
theorem and an additional exampl