11 research outputs found

    Salmonella Typhi and Salmonella Paratyphi A elaborate distinct systemic metabolite signatures during enteric fever

    No full text
    The host–pathogen interactions induced by Salmonella Typhi and Salmonella Paratyphi A during enteric fever are poorly understood. This knowledge gap, and the human restricted nature of these bacteria, limit our understanding of the disease and impede the development of new diagnostic approaches. To investigate metabolite signals associated with enteric fever we performed two dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC/TOFMS) on plasma from patients with S. Typhi and S. Paratyphi A infections and asymptomatic controls, identifying 695 individual metabolite peaks. Applying supervised pattern recognition, we found highly significant and reproducible metabolite profiles separating S. Typhi cases, S. Paratyphi A cases, and controls, calculating that a combination of six metabolites could accurately define the etiological agent. For the first time we show that reproducible and serovar specific systemic biomarkers can be detected during enteric fever. Our work defines several biologically plausible metabolites that can be used to detect enteric fever, and unlocks the potential of this method in diagnosing other systemic bacterial infections

    Gallbladder carriage generates genetic variation and genome degradation in Salmonella Typhi

    No full text
    Despite recent advances in typhoid fever control, asymptomatic carriage of Salmonella Typhi in the gallbladder remains poorly understood. Aiming to understand if S. Typhi becomes genetically adapted for long-term colonisation in the gallbladder, we performed whole genome sequencing on a collection of S. Typhi isolated from the gallbladders of typhoid carriers. These sequences were compared to contemporaneously sampled sequences from organisms isolated from the blood of acute patients within the same population. We found that S. Typhi carriage was not restricted to any particular genotype or conformation of antimicrobial resistance genes, but was largely reflective of S. Typhi circulating in the general population. However, gallbladder isolates showed a higher genetic variability than acute isolates, with median pairwise SNP distances of 21 and 13 SNPs (p = 2.8x10-9), respectively. Within gallbladder isolates of the predominant H58 genotype, variation was associated with a higher prevalence of nonsense mutations. Notably, gallbladder isolates displayed a higher frequency of non-synonymous mutations in genes encoding hypothetical proteins, membrane lipoproteins, transport/binding proteins, surface antigens, and carbohydrate degradation. Specifically, we identified several gallbladder-specific non-synonymous mutations involved in LPS synthesis and modification, with some isolates lacking the Vi capsular polysaccharide vaccine target due to the 134Kb deletion of SPI-7. S. Typhi is under strong selective pressure in the human gallbladder, which may be reflected phylogenetically by long terminal branches that may distinguish organisms from chronic and acute infections. Our work shows that selective pressures asserted by the hostile environment of the human gallbladder generate new antigenic variants and raises questions regarding the role of carriage in the epidemiology of typhoid fever

    Phenotypic and genotypic characteristics of ESBL and AmpC producing organisms associated with bacteraemia in Ho Chi Minh City, Vietnam

    No full text
    Background Broad-spectrum antimicrobials are commonly used as empirical therapy for infections of presumed bacterial origin. Increasing resistance to these antimicrobial agents has prompted the need for alternative therapies and more effective surveillance. Better surveillance leads to more informed and improved delivery of therapeutic interventions, potentially leading to better treatment outcomes. Methods We screened 1017 Gram negative bacteria (excluding Pseudomonas spp. and Acinetobacter spp.) isolated between 2011 and 2013 from positive blood cultures for susceptibility against third generation cephalosporins, ESBL and/or AmpC production, and associated ESBL/AmpC genes, at the Hospital for Tropical Diseases in Ho Chi Minh City. Results Phenotypic screening found that 304/1017 (30%) organisms were resistance to third generation cephalosporins; 172/1017 (16.9%) of isolates exhibited ESBL activity, 6.2% (63/1017) had AmpC activity, and 0.5% (5/1017) had both ESBL and AmpC activity. E. coli and Aeromonas spp. were the most common organisms associated with ESBL and AmpC phenotypes, respectively. Nearly half of the AmpC producers harboured an ESBL gene. There was no significant difference (p &gt; 0.05) between the antimicrobial resistance phenotypes of the organisms associated with community and hospital-acquired infections. Conclusion AmpC and ESBL producing organisms were commonly associated with bloodstream infections in this setting, with antimicrobial resistant organisms being equally distributed between infections originating from the community and healthcare settings. Aeromonas spp., which was associated with bloodstream infections in cirrhotic/ hepatitis patients, were the most abundant AmpC producing organism. We conclude that empirical monotherapy with third generation cephalosporins may not be optimum in this setting.</p

    Role of environmental factors in shaping spatial distribution of salmonella enterica Serovar Typhi, Fiji

    No full text
    Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen-specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12-1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80-0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69-0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji

    Social mixing in Fiji: Who-eats-with-whom contact patterns and the implications of age and ethnic heterogeneity for disease dynamics in the Pacific Islands.

    No full text
    Empirical data on contact patterns can inform dynamic models of infectious disease transmission. Such information has not been widely reported from Pacific islands, nor strongly multi-ethnic settings, and few attempts have been made to quantify contact patterns relevant for the spread of gastrointestinal infections. As part of enteric fever investigations, we conducted a cross-sectional survey of the general public in Fiji, finding that within the 9,650 mealtime contacts reported by 1,814 participants, there was strong like-with-like mixing by age and ethnicity, with higher contact rates amongst iTaukei than non-iTaukei Fijians. Extra-domiciliary lunchtime contacts follow these mixing patterns, indicating the overall data do not simply reflect household structures. Inter-ethnic mixing was most common amongst school-age children. Serological responses indicative of recent Salmonella Typhi infection were found to be associated, after adjusting for age, with increased contact rates between meal-sharing iTaukei, with no association observed for other contact groups. Animal ownership and travel within the geographical division were common. These are novel data that identify ethnicity as an important social mixing variable, and use retrospective mealtime contacts as a socially acceptable metric of relevance to enteric, contact and respiratory diseases that can be collected in a single visit to participants. Application of these data to other island settings will enable communicable disease models to incorporate locally relevant mixing patterns in parameterisation

    Role of environmental factors in shaping spatial distribution of salmonella enterica Serovar Typhi, Fiji

    No full text
    Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen-specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12-1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80-0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69-0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji

    A cross-sectional seroepidemiological survey of typhoid fever in Fiji.

    Get PDF
    Fiji, an upper-middle income state in the Pacific Ocean, has experienced an increase in confirmed case notifications of enteric fever caused by Salmonella enterica serovar Typhi (S. Typhi). To characterize the epidemiology of typhoid exposure, we conducted a cross-sectional sero-epidemiological survey measuring IgG against the Vi antigen of S. Typhi to estimate the effect of age, ethnicity, and other variables on seroprevalence. Epidemiologically relevant cut-off titres were established using a mixed model analysis of data from recovering culture-confirmed typhoid cases. We enrolled and assayed plasma of 1787 participants for anti-Vi IgG; 1,531 of these were resident in mainland areas that had not been previously vaccinated against S. Typhi (seropositivity 32.3% (95%CI 28.2 to 36.3%)), 256 were resident on Taveuni island, which had been previously vaccinated (seropositivity 71.5% (95%CI 62.1 to 80.9%)). The seroprevalence on the Fijian mainland is one to two orders of magnitude higher than expected from confirmed case surveillance incidence, suggesting substantial subclinical or otherwise unreported typhoid. We found no significant differences in seropositivity prevalences by ethnicity, which is in contrast to disease surveillance data in which the indigenous iTaukei Fijian population are disproportionately affected. Using multivariable logistic regression, seropositivity was associated with increased age (odds ratio 1.3 (95% CI 1.2 to 1.4) per 10 years), the presence of a pit latrine (OR 1.6, 95%CI 1.1 to 2.3) as opposed to a septic tank or piped sewer, and residence in settlements rather than residential housing or villages (OR 1.6, 95% CI 1.0 to 2.7). Increasing seropositivity with age is suggestive of low-level endemic transmission in Fiji. Improved sanitation where pit latrines are used and addressing potential transmission routes in settlements may reduce exposure to S. Typhi. Widespread unreported infection suggests there may be a role for typhoid vaccination in Fiji, in addition to public health management of cases and outbreaks

    The molecular and spatial epidemiology of typhoid fever in rural Cambodia

    Get PDF
    Typhoid fever, caused by the bacterium Salmonella Typhi, is an endemic cause of febrile disease in Cambodia. The aim of this study was to better understand the epidemiology of pediatric typhoid fever in Cambodia. We accessed routine blood culture data from Angkor Hospital for Children (AHC) in Siem Reap province between 2007 and 2014, and performed whole genome sequencing (WGS) on the isolated bacteria to characterize the S. Typhi population. The resulting phylogenetic information was combined with conventional epidemiological approaches to investigate the spatiotemporal distribution of S. Typhi and population-level risk factors for reported disease. During the study period, there were 262 cases of typhoid within a 100 km radius of AHC, with a median patient age of 8.2 years (IQR: 5.1–11.5 years). The majority of infections occurred during the rainy season, and commune incidences as high as 11.36/1,000 in children aged <15 years were observed over the study period. A population-based risk factor analysis found that access to water within households and increasing distance from Tonle Sap Lake were protective. Spatial mapping and WGS provided additional resolution for these findings, and confirmed that proximity to the lake was associated with discrete spatiotemporal disease clusters. We confirmed the dominance of MDR H58 S. Typhi in this population, and found substantial evidence of diversification (at least seven sublineages) within this single lineage. We conclude that there is a substantial burden of pediatric typhoid fever in rural communes in Cambodia. Our data provide a platform for additional population-based typhoid fever studies in this location, and suggest that this would be a suitable setting in which to introduce a school-based vaccination programme with Vi conjugate vaccines

    A cross-sectional seroepidemiological survey of typhoid fever in Fiji.

    No full text
    Fiji, an upper-middle income state in the Pacific Ocean, has experienced an increase in confirmed case notifications of enteric fever caused by Salmonella enterica serovar Typhi (S. Typhi). To characterize the epidemiology of typhoid exposure, we conducted a cross-sectional sero-epidemiological survey measuring IgG against the Vi antigen of S. Typhi to estimate the effect of age, ethnicity, and other variables on seroprevalence. Epidemiologically relevant cut-off titres were established using a mixed model analysis of data from recovering culture-confirmed typhoid cases. We enrolled and assayed plasma of 1787 participants for anti-Vi IgG; 1,531 of these were resident in mainland areas that had not been previously vaccinated against S. Typhi (seropositivity 32.3% (95%CI 28.2 to 36.3%)), 256 were resident on Taveuni island, which had been previously vaccinated (seropositivity 71.5% (95%CI 62.1 to 80.9%)). The seroprevalence on the Fijian mainland is one to two orders of magnitude higher than expected from confirmed case surveillance incidence, suggesting substantial subclinical or otherwise unreported typhoid. We found no significant differences in seropositivity prevalences by ethnicity, which is in contrast to disease surveillance data in which the indigenous iTaukei Fijian population are disproportionately affected. Using multivariable logistic regression, seropositivity was associated with increased age (odds ratio 1.3 (95% CI 1.2 to 1.4) per 10 years), the presence of a pit latrine (OR 1.6, 95%CI 1.1 to 2.3) as opposed to a septic tank or piped sewer, and residence in settlements rather than residential housing or villages (OR 1.6, 95% CI 1.0 to 2.7). Increasing seropositivity with age is suggestive of low-level endemic transmission in Fiji. Improved sanitation where pit latrines are used and addressing potential transmission routes in settlements may reduce exposure to S. Typhi. Widespread unreported infection suggests there may be a role for typhoid vaccination in Fiji, in addition to public health management of cases and outbreaks
    corecore