228 research outputs found

    Synthesizing Coupled 3D Face Modalities by Trunk-Branch Generative Adversarial Networks

    Full text link
    Generating realistic 3D faces is of high importance for computer graphics and computer vision applications. Generally, research on 3D face generation revolves around linear statistical models of the facial surface. Nevertheless, these models cannot represent faithfully either the facial texture or the normals of the face, which are very crucial for photo-realistic face synthesis. Recently, it was demonstrated that Generative Adversarial Networks (GANs) can be used for generating high-quality textures of faces. Nevertheless, the generation process either omits the geometry and normals, or independent processes are used to produce 3D shape information. In this paper, we present the first methodology that generates high-quality texture, shape, and normals jointly, which can be used for photo-realistic synthesis. To do so, we propose a novel GAN that can generate data from different modalities while exploiting their correlations. Furthermore, we demonstrate how we can condition the generation on the expression and create faces with various facial expressions. The qualitative results shown in this paper are compressed due to size limitations, full-resolution results and the accompanying video can be found in the supplementary documents. The code and models are available at the project page: https://github.com/barisgecer/TBGAN.Comment: Check project page: https://github.com/barisgecer/TBGAN for the full resolution results and the accompanying vide

    Climate Change and invasibility of the Antarctic benthos

    No full text
    Benthic communities living in shallow-shelf habitats in Antarctica (<100-m depth) are archaic in their structure and function. Modern predators, including fast-moving, durophagous (skeleton-crushing) bony fish, sharks, and crabs, are rare or absent; slow-moving invertebrates are the top predators; and epifaunal suspension feeders dominate many soft substratum communities. Cooling temperatures beginning in the late Eocene excluded durophagous predators, ultimately resulting in the endemic living fauna and its unique food-web structure. Although the Southern Ocean is oceanographically isolated, the barriers to biological invasion are primarily physiological rather than geographic. Cold temperatures impose limits to performance that exclude modern predators. Global warming is now removing those physiological barriers, and crabs are reinvading Antarctica. As sea temperatures continue to rise, the invasion of durophagous predators will modernize the shelf benthos and erode the indigenous character of marine life in Antarctica

    Can the understory affect the Hymenoptera parasitoids in a Eucalyptus plantation?

    Get PDF
    The understory in forest plantations can increase richness and diversity of natural enemies due to greater plant species richness. The objective of this study was to test the hypothesis that the presence of the understory and climatic season in the region (wet or dry) can increase the richness and abundance of Hymenoptera parasitoids in Eucalyptus plantations, in the municipality of Belo Oriente, Minas Gerais State, Brazil. In each eucalyptus cultivation (five areas of cultivation) ten Malaise traps were installed, five with the understory and five without it. A total of 9,639 individuals from 30 families of the Hymenoptera parasitoids were collected, with Mymaridae, Scelionidae, Encyrtidae and Braconidae being the most collected ones with 4,934, 1,212, 619 and 612 individuals, respectively. The eucalyptus stands with and without the understory showed percentage of individuals 45.65% and 54.35% collected, respectively. The understory did not represent a positive effect on the overall abundance of the individuals Hymenoptera in the E. grandis stands, but rather exerted a positive effect on the specific families of the parasitoids of this order

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Diagnosis of Alzheimer's Disease Based on Disease-Specific Autoantibody Profiles in Human Sera

    Get PDF
    After decades of Alzheimer's disease (AD) research, the development of a definitive diagnostic test for this disease has remained elusive. The discovery of blood-borne biomarkers yielding an accurate and relatively non-invasive test has been a primary goal. Using human protein microarrays to characterize the differential expression of serum autoantibodies in AD and non-demented control (NDC) groups, we identified potential diagnostic biomarkers for AD. The differential significance of each biomarker was evaluated, resulting in the selection of only 10 autoantibody biomarkers that can effectively differentiate AD sera from NDC sera with a sensitivity of 96.0% and specificity of 92.5%. AD sera were also distinguishable from sera obtained from patients with Parkinson's disease and breast cancer with accuracies of 86% and 92%, respectively. Results demonstrate that serum autoantibodies can be used effectively as highly-specific and accurate biomarkers to diagnose AD throughout the course of the disease

    Measurement of the Relative Branching Fraction of Υ(4S)\Upsilon(4S) to Charged and Neutral B-Meson Pairs

    Full text link
    We analyze 9.7 x 10^6 B\bar{B}$ pairs recorded with the CLEO detector to determine the production ratio of charged to neutral B-meson pairs produced at the Y(4S) resonance. We measure the rates for B^0 -> J/psi K^{(*)0} and B^+ -> J/psi K^{(*)+} decays and use the world-average B-meson lifetime ratio to extract the relative widths f+-/f00 = Gamma(Y(4S) -> B+B-)/Gamma(Y(4S) -> B0\bar{B0}) = = 1.04 +/- 0.07(stat) +/- 0.04(syst). With the assumption that f+- + f00 = 1, we obtain f00 = 0.49 +/- 0.02(stat) +/- 0.01(syst) and f+- = 0.51 +/- 0.02(stat) +/- 0.01(syst). This production ratio and its uncertainty apply to all exclusive B-meson branching fractions measured at the Y(4S) resonance.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Study of the Decays B0 --> D(*)+D(*)-

    Full text link
    The decays B0 --> D*+D*-, B0 --> D*+D- and B0 --> D+D- are studied in 9.7 million Y(4S) --> BBbar decays accumulated with the CLEO detector. We determine Br(B0 --> D*+D*-) = (9.9+4.2-3.3+-1.2)e-4 and limit Br(B0 --> D*+D-) < 6.3e-4 and Br(B0 --> D+D-) < 9.4e-4 at 90% confidence level (CL). We also perform the first angular analysis of the B0 --> D*+D*- decay and determine that the CP-even fraction of the final state is greater than 0.11 at 90% CL. Future measurements of the time dependence of these decays may be useful for the investigation of CP violation in neutral B meson decays.Comment: 21 pages, 5 figures, submitted to Phys. Rev.

    A Search for BτνB\to \tau\nu

    Full text link
    We report results of a search for BτνB\to\tau\nu in a sample of 9.7 million charged BB meson decays. The search uses both πν\pi\nu and ννˉ\ell\nu\bar\nu decay modes of the τ\tau, and demands exclusive reconstruction of the companion Bˉ\bar B decay to suppress background. We set an upper limit on the branching fraction B(Bτν)<8.4×104{\cal B}(B\to \tau\nu) < 8.4\times 10^{-4} at 90% confidence level. With slight modification to the analysis we also establish B(B±K±ννˉ)<2.4×104{\cal B}(B^\pm\to K^\pm\nu\bar\nu) < 2.4\times 10^{-4} at 90% confidence level.Comment: 10 ages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Precise Measurement of B^{0}\to \bar{B^{0} Mixing Parameters at the Υ(\Upsilon(S)$

    Full text link
    We describe a measurement of B^0-B^0bar mixing parameters exploiting a method of partial reconstruction of the decay chains B0 -> D^{*-}\pi^+ and B0 -> D^{*-}\rho^+. Using 9.6 x 10^6 BBbar pairs collected at the Cornell Electron Storage Ring, we find \chi_d = 0.198 +- 0.013 +- 0.014, |y_d|<0.41 at 95% confidence level, and |Re(\epsilon_B)|<0.034 at 95% confidence level.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN
    corecore