6 research outputs found

    Combined microsatellite and FGFR3 mutation analysis enables a highly sensitive detection of urothelial cell carcinoma in voided urine

    Get PDF
    PURPOSE: Fibroblast growth factor receptor 3 (FGFR3) mutations were reported recently at a high frequency in low-grade urothelial cell carcinoma (UCC). We investigated the feasibility of combining microsatellite analysis (MA) and the FGFR3 status for the detection of UCC in voided urine. EXPERIMENTAL DESIGN: In a prospective setting, 59 UCC tissues and matched urine samples were obtained, and subjected to MA (23 markers) and FGFR3 mutation analysis (exons 7, 10, and 15). In each case, a clinical record with tumor and urine features was provided. Fifteen patients with a negative cystoscopy during follow-up served as controls. RESULTS: A mutation in the FGFR3 gene was found in 26 (44%) UCCs of which 22 concerned solitary pTaG1/2 lesions. These mutations were absent in the 15 G3 tumors. For the 6 cases with leukocyturia, 46 microsatellite alterations were found in the tumor. Only 1 of these was also detected in the urine. This was 125 of 357 for the 53 cases without leukocyte contamination. The sensitivity of MA on voided urine was lower for FGFR3-positive UCC (15 of 21; 71%) as compared with FGFR3 wild-type UCC (29 of 32; 91%). By including the FGFR3 mutation, the sensitivity of molecular cytology increased to 89% and was superior to the sensitivity of morphological cytology (25%) for every clinical subdivision. The specificity was 14 of 15 (93%) for the two (molecular and morphological) cytological approaches. CONCLUSIONS: Molecular urine cytology by MA and FGFR3 mutation analysis enables a highly sensitive and specific detection of UCC. The similarity of molecular profiles in tumor and urine corroborate their clonal relation

    Inflammation and prolonged QT time: Results from the Cardiovascular Disease, Living and Ageing in Halle (CARLA) study

    Get PDF
    Background: Previous research found an association of CRP with QT time in population based samples. Even more, there is evidence of a substantial involvement of the tumor necrosis factor-alpha system in the pathophysiology of cardiac arrhythmia, while the role of Interleukin 6 remains inconclusive. Objective: To determine the association between inflammation with an abnormally prolonged QT-time (APQT) in men and women of the elderly general population. Methods: Data descend from the baseline examination of the prospective, population-based Cardiovascular Disease, Living and Ageing in Halle (CARLA) Study. After exclusion of subjects with atrial fibrillation and missing ECG recording the final study cohort consisted of 919 men and 797 women. Blood parameters of inflammation were the soluble TNF-Receptor 1 (sTNF-R1), the high-sensitive C-reactive protein (hsCRP), and Interleukin 6 (IL-6). In accordance with major cardiologic societies we defined an APQT above a QT time of 460 ms in women and 450 ms in men. Effect sizes and the corresponding 95% confidence intervals (CI) were estimated by performing multiple linear and logistic regression analyses including the analysis of sex differences by interaction terms. Results: After covariate adjustment we found an odds ratio (OR) of 1.89 (95% CI: 1.13, 3.17) per 1000 pg/mL increase of sTNF-R1 in women, and 0.74 (95% CI: 0.48, 1.15) in men. In the covariate adjusted linear regression sTNF-R1 was again positively associated with QT time in women (5.75 ms per 1000 pg/mL, 95% CI: 1.32, 10.18), but not in men. Taking possible confounders into account IL-6 and hsCRP were not significantly related to APQT in both sexes. Conclusion: Our findings from cross-sectional analyses give evidence for an involvement of TNF-alpha in the pathology of APQT in women

    Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria

    Prognostic relevance of the interaction between short-term, metronome-paced heart rate variability, and inflammation: Results from the population-based CARLA cohort study

    No full text
    Aims To determine the interaction between HRV and inflammation and their association with cardiovascular/all-cause mortality in the general population. Methods and results Subjects of the CARLA study (n = 1671; 778 women, 893 men, 45-83 years of age) were observed for an average follow-up period of 8.8 years (226 deaths, 70 cardiovascular deaths). Heart rate variability parameters were calculated from 5-min segments of 20-min resting electrocardiograms. High-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and soluble tumour necrosis factor-alpha receptor type 1 (sTNF-R1) were measured as inflammation parameters. The HRV parameters determined included the standard deviation of normal-to-normal intervals (SDNN), the root-mean-square of successive normal-interval differences (RMSSD), the low- and high-frequency (HF) power, the ratio of both, and non-linear p

    Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood

    Get PDF
    Understanding the difference in genetic regulation of gene expression between brain and blood is important for discovering genes for brain-related traits and disorders. Here, we estimate the correlation of genetic effects at the top-associated cis-expression or -DNA methylation (DNAm) quantitative trait loci (cis-eQTLs or cis-mQTLs) between brain and blood (r b ). Using publicly available data, we find that genetic effects at the top cis-eQTLs or mQTLs are highly correlated between independent brain and blood samples (r b = 0.70 for cis-eQTLs and r ^ b = 0.78 for cis-mQTLs). Using meta-analyzed brain cis-eQTL/mQTL data (n = 526 to 1194), we identify 61 genes and 167 DNAm sites associated with four brain-related phenotypes, most of which are a subset of the discoveries (97 genes and 295 DNAm sites) using data from blood with larger sample sizes (n = 1980 to 14,115). Our results demonstrate the gain of power in gene discovery for brain-related phenotypes using blood cis-eQTL/mQTL data with large sample sizes. © 2018 The Author(s).Peer reviewe
    corecore