31 research outputs found

    Overexpression of Protein Kinase C Confers Protection Against Antileukemic Drugs by Inhibiting the Redox-Dependent Sphingomyelinase Activation

    Get PDF
    ABSTRACT Induction of apoptosis by chemotherapeutic drugs involves the sphingomyelin-ceramide (SM-CER) pathway. This signaling is critically dependent on reactive oxygen species (ROS) generation and p53/p56 Lyn activation. In this study, we have investigated the influence of protein kinase C (PKC) overexpression on the SM-CER pathway in U937 human leukemia cell line. We show that PKC overexpression resulted in delayed apoptosis and significant resistance to both 1-␀-D-arabinofuranosylcytosine (ara-C) and daunorubicin (DNR), but there was no significant protection against cell-permeant C 6 -CER. Moreover, PKC overexpression abrogated drug-induced neutral sphingomyelinase stimulation and CER generation by inhibiting ROS production. We further investigated p53/p56 Lyn activation in PKC-overexpressing U937 cells treated with ara-C or DNR. We demonstrate that PKC inhibited p53/p56 Lyn phosphorylation and stimulation in drug-or H 2 O 2 -treated cells, suggesting that p53/p56 Lyn redox regulation is altered in PKC-overexpressing cells. Finally, we show that PKC-overexpressing U937 cells displayed accelerated H 2 O 2 detoxification. Altogether, our study provides evidence for the role of PKC in the negative regulation of drug-induced SM-CER pathway

    OSU-T315 as an Interesting Lead Molecule for Novel B Cell-Specific Therapeutics

    No full text
    B cells are pathogenic in various disease processes and therefore represent an interesting target for the development of novel immunosuppressants. In the search for new therapeutic molecules, we utilized an in vitro B cell activation assay with ODN2006-stimulated Namalwa cells to screen a chemical library of small molecules for B cell modulating effects. OSU-T315, described as an inhibitor of integrin-linked kinase (ILK), was hereby identified as a hit. On human and murine primary B cells, OSU-T315 potently suppressed the proliferation and the production of antibodies and cytokines upon stimulation, suggesting that ILK could be a promising target in the modulation of B cell activity. Mice with B cell-specific knockout of ILK were generated. Surprisingly, knockout of ILK in murine B cells did not affect B cell function as assessed by several in vivo and ex vivo B cell assays and did not alter the B cell immunosuppressive activity of OSU-T315. In conclusion, OSU-T315 displays potency as B cell modulator, probably through a mechanism of action independent of ILK, and might serve as lead drug molecule for the development of novel B cell-selective drugs

    Comparative In Vitro Immune Stimulation Analysis of Primary Human B Cells and B Cell Lines

    No full text
    B cell specific immunomodulatory drugs still remain an unmet medical need. Utilisation of validated simplified in vitro models would allow readily obtaining new insights in the complexity of B cell regulation. For this purpose we investigated which human B lymphocyte stimulation assays may be ideally suited to investigate new B lymphocyte immunosuppressants. Primary polyclonal human B cells underwent in vitro stimulation and their proliferation, production of immunoglobulins (Igs) and of cytokines, and expression of cell surface molecules were analysed using various stimuli. ODN2006, a toll-like receptor 9 (TLR9) agonist, was the most potent general B cell stimulus. Subsequently, we investigated on which human B cell lines ODN2006 evoked the broadest immunostimulatory effects. The Namalwa cell line proved to be the most responsive upon TLR9 stimulation and hence may serve as a relevant, homogeneous, and stable B cell model in an in vitro phenotypic assay for the discovery of new targets and inhibitors of the B cell activation processes. As for the read-out for such screening assay, it is proposed that the expression of activation and costimulatory surface markers reliably reflects B lymphocyte activation

    Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects.

    Get PDF
    Protein fermentation results in production of metabolites such as ammonia, amines and indolic, phenolic and sulfur-containing compounds. In vitro studies suggest that these metabolites might be toxic. However, human and animal studies do not consistently support these findings. We modified protein fermentation in healthy subjects to assess the effects on colonic metabolism and parameters of gut health, and to identify metabolites associated with toxicity.After a 2-week run-in period with normal protein intake (NP), 20 healthy subjects followed an isocaloric high protein (HP) and low protein (LP) diet for 2 weeks in a cross-over design. Protein fermentation was estimated from urinary p-cresol excretion. Fecal metabolite profiles were analyzed using GC-MS and compared using cluster analysis. DGGE was used to analyze microbiota composition. Fecal water genotoxicity and cytotoxicity were determined using the Comet assay and the WST-1-assay, respectively, and were related to the metabolite profiles.Dietary protein intake was significantly higher during the HP diet compared to the NP and LP diet. Urinary p-cresol excretion correlated positively with protein intake. Fecal water cytotoxicity correlated negatively with protein fermentation, while fecal water genotoxicity was not correlated with protein fermentation. Heptanal, 3-methyl-2-butanone, dimethyl disulfide and 2-propenyl ester of acetic acid are associated with genotoxicity and indole, 1-octanol, heptanal, 2,4-dithiapentane, allyl-isothiocyanate, 1-methyl-4-(1-methylethenyl)-benzene, propionic acid, octanoic acid, nonanoic acid and decanoic acid with cytotoxicity.This study does not support a role of protein fermentation in gut toxicity. The identified metabolites can provide new insight into colonic health.ClinicalTrial.gov NCT01280513

    Synthesis of a 2,4,6-trisubstituted 5-cyano-pyrimidine library and evaluation of its immunosuppressive activity in a Mixed Lymphocyte Reaction assay

    No full text
    A series of novel pyrimidine analogues were synthesized and evaluated for immunosuppressive activity in the Mixed Lymphocyte Reaction assay, which is well-known as the in vitro model for in vivo rejection after organ transplantation. Systematic variation of the substituents at positions 2, 4 and 6 of the pyrimidine scaffold led to the discovery of 2-benzylthio-5-cyano-6-(4-methoxyphenyl)-4-morpholinopyrimidine with an IC(50) value of 1.6ΌM in the MLR assay.publisher: Elsevier articletitle: Synthesis of a 2,4,6-trisubstituted 5-cyano-pyrimidine library and evaluation of its immunosuppressive activity in a Mixed Lymphocyte Reaction assay journaltitle: Bioorganic & Medicinal Chemistry articlelink: http://dx.doi.org/10.1016/j.bmc.2012.12.032 content_type: article copyright: Copyright © 2013 Elsevier Ltd. All rights reserved.status: publishe

    Synthesis and evaluation of 6-aza-2'-deoxyuridine monophosphate analogs as inhibitors of thymidylate synthases, and as substrates or inhibitors of thymidine monophosphate kinase in Mycobacterium tuberculosis.

    No full text
    International audienceA series of 5-substituted analogs of 6-aza-2'-deoxyuridine 5'-monophosphate, 6-aza-dUMP, has been synthesized and evaluated as potential inhibitors of the two mycobacterial thymidylate synthases (i.e., a flavin-dependent thymidylate synthase, ThyX, and a classical thymidylate synthase, ThyA). Replacement of C(6) of the natural substrate dUMP by a N-atom in 6-aza-dUMP 1a led to a derivative with weak ThyX inhibitory activity (33% inhibition at 50 ΌM). Introduction of alkyl and aryl groups at C(5) of 1a resulted in complete loss of inhibitory activity, whereas the attachment of a 3-(octanamido)prop-1-ynyl side chain in derivative 3 retained the weak level of mycobacterial ThyX inhibition (40% inhibition at 50 ΌM). None of the synthesized derivatives displayed any significant inhibitory activity against mycobacterial ThyA. The compounds have also been evaluated as potential inhibitors of mycobacterial thymidine monophosphate kinase (TMPKmt). None of the derivatives showed any significant TMPKmt inhibition. However, replacement of C(6) of the natural substrate (dTMP) by a N-atom furnished 6-aza-dTMP (1b), which still was recognized as a substrate by TMPKmt

    Synthesis and evaluation of 6-aza-2'-deoxyuridine monophosphate analogs as inhibitors of thymidylate synthases, and as substrates or Iihibitors of thymidine monophosphate kinase in Mycobacterium tuberculosis

    No full text
    A series of 5-substituted analogs of 6-aza-2'-deoxyuridine 5'-monophosphate, 6-aza-dUMP, has been synthesized and evaluated as potential inhibitors of the two mycobacterial thymidylate synthases (i.e., a flavin-dependent thymidylate synthase, ThyX, and a classical thymidylate synthase, ThyA). Replacement of C(6) of the natural substrate dUMP by a N-atom in 6-aza-dUMP 1a led to a derivative with weak ThyX inhibitory activity (33% inhibition at 50 ΌM). Introduction of alkyl and aryl groups at C(5) of 1a resulted in complete loss of inhibitory activity, whereas the attachment of a 3-(octanamido)prop-1-ynyl side chain in derivative 3 retained the weak level of mycobacterial ThyX inhibition (40% inhibition at 50 ΌM). None of the synthesized derivatives displayed any significant inhibitory activity against mycobacterial ThyA. The compounds have also been evaluated as potential inhibitors of mycobacterial thymidine monophosphate kinase (TMPKmt). None of the derivatives showed any significant TMPKmt inhibition. However, replacement of C(6) of the natural substrate (dTMP) by a N-atom furnished 6-aza-dTMP (1b), which still was recognized as a substrate by TMPKmt.status: publishe
    corecore