11 research outputs found

    Systemic acquired resistance

    Get PDF
    Plants can be induced to switch on defense reactions to a broad range of pathogens as a result of prior exposure to pathogens or to various chemicals or physical stress. Induced resistance is expressed locally, at the site of the infection or systemically, at sites remotely located from the initial infection. Upon recognition of the initial stimulus by the plant, a signal transduction pathway is set in motion, that includes intra and intercellular signals, and results in the activation of defense mechanisms, mostly by expression of new genes. This brief review will focus on some of the recent advances in the understanding of systemic acquired resistance and on the role played by salicylic acid in this proces

    Polariton quantum boxes in semiconductor microcavities

    Get PDF
    We report on the realization of polariton quantum boxes in a semiconductor microcavity under strong coupling regime. The quantum boxes consist of mesas that confine the cavity photon, etched on top of the spacer of a microcavity. For mesas with sizes of the order of a few micron in width and nm in depth, we observe quantization, caused by the lateral confinement, of the polariton modes in several peaks. We evidence the strong exciton-photon coupling regime through a typical/clear anticrossing curve for each quantized level. Moreover the growth technique is of high quality, which opens the way for the conception of new optoelectronic devices

    Nonlinear relaxation of zero-dimension-trapped microcavity polaritons

    Get PDF
    We study the emission properties of confined polariton states in shallow zero-dimensional traps under nonresonant excitation. We evidence several relaxation regimes. For slightly negative photon-exciton detuning, we observe a nonlinear increase of the emission intensity, characteristic of carrier-carrier scattering assisted relaxation under strong-coupling regime. This demonstrates the efficient relaxation toward a confined state of the system. For slightly positive detuning, we observe the transition from strong to weak coupling regime and then to single-mode lasing

    The Protein Phosphatase 7 Regulates Phytochrome Signaling in Arabidopsis

    Get PDF
    The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems

    Zero dimensional exciton-polaritons

    Get PDF
    We present a novel semiconductor structure in which 0D polaritons coexist with 2D microcavity polaritons. Spatial trapping of the 2D microcavity polaritons results from the confinement of their photonic part in a potential well, consisting of an adjustable thickness variation of the spacer layer. This original technique allows to create polaritonic boxes of any size and shape. Strong coupling regime is evidenced by the typical energy level anticrossing, in real space and in momentum space, and supported by a theoretical model

    FHY1 Mediates Nuclear Import of the Light-Activated Phytochrome A Photoreceptor

    Get PDF
    The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant function. The transcription of FHY1 and FHL are controlled by FHY3 (Far-red elongated HYpocotyl 3) and FAR1 (FAr-red impaired Response 1), a related pair of transcription factors, which thus indirectly control phyA nuclear accumulation. FHY1 and FHL preferentially interact with the light-activated form of phyA, but the mechanism by which they enable photoreceptor accumulation in the nucleus remains unsolved. Sequence comparison of numerous FHY1-related proteins indicates that only the NLS located at the N-terminus and the phyA-interaction domain located at the C-terminus are conserved. We demonstrate that these two parts of FHY1 are sufficient for FHY1 function. phyA nuclear accumulation is inhibited in the presence of high levels of FHY1 variants unable to enter the nucleus. Furthermore, nuclear accumulation of phyA becomes light- and FHY1-independent when an NLS sequence is fused to phyA, strongly suggesting that FHY1 mediates nuclear import of light-activated phyA. In accordance with this idea, FHY1 and FHY3 become functionally dispensable in seedlings expressing a constitutively nuclear version of phyA. Our data suggest that the mechanism uncovered in Arabidopsis is conserved in higher plants. Moreover, this mechanism allows us to propose a model explaining why phyA needs a specific nuclear import pathway

    Toward a digital database of plant cell signalling networks: advantages, limitations and predictive aspects of the digital model

    Get PDF
    The process of signal integration, which contributes to the regulation of multiple cellular activities, can be described in a digital language by a set of connected digital operations. In this article we delineate the basic concepts of cell signalling in the context of a logical description of information processing. Newly described instances of signal integration in plants are given as examples. The different advantages, limitations and predictive aspects of the digital modeling of signal transduction networks, as well as the min¬imal architecture of a computer database for plant signalling networks are discussed

    Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis

    Get PDF
    The interaction of phytochrome signalling with the SA signal transduction pathway has been investigated in Arabidopsis using single and multiple mutants affected in light perception (phyA and phyB deficient) and light-signal processing (psi2, phytochrome signalling). The induction of PR1 by SA and functional analogues has been found to strictly correlate with the activity of the signalling pathway controlled by both phyA and phyB photoreceptors. In darkness as well as dim light, and independently of a carbohydrate source, SA-induced PR gene expression as well as the hypersensitive response to pathogens (HR) are strongly reduced. Moreover, the initiation of HR also exhibits a strict dependence upon both the presence and the amplitude of a phytochrome-elicited signal. The growth of an incompatible strain of bacterial a pathogen (Pseudomonas syringae pv. tomato) was enhanced in phyA-phyB and decreased in psi2 mutants. While functional chloroplasts were found necessary for the development of an HR, the induction of PRs was strictly dependent on light, but independent of functional chloroplasts. Taken together, these data demonstrate that the light-induced signalling pathway interacts with the pathogen/SA-mediated signal transduction route. These results are summarized in a formalism that allows qualitative computer simulation
    corecore